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PREFACE 

A considerable amount of research has been devoted recently to Multicriteria Decision 

Making, stimulated by the vast number of real problems, for example in industrial, urban and 

agricultural economics, in the social sciences, and in the design of complex engineering systems, 

where many decision makers are present or many, possibly conflicting objectives should be 

taken into account in order to reach some form of optimality. 

A rough division into two classes may be made among the approaches to Multicriteria 

Decision Making problems. The first one deals mainly with the empirical determination of 

preference structures in some specific problems, and seeks methods for their meaningful 

aggregation in order to arrive, often by ad hoc and iterative procedures, at practically reasonable 

solutions. The lines of thought which are followed and the used methods may be looked upon as 

modern developments of operations research. 

The second one, predominantly treated by researches whose background is often rooted in 

systems and control theory, or in mathematical programming and in its applications, seems more 

directed toward general and rigorous formulations in order to reduce Multicriteria Decision 

Problems conceptually to clearly defined classes of optimization problems for which definite 

solutions algorithms are sought. 

The contributions to the present volume follow mainly the latter line of thought, although 
references and comparisons are made to other, sometimes non-empirical methods, for example by 

P. L. Yu and, in general, algorithmic solutions are proposed to specific problems as a result of the 

conceptual methods used. The reader is introduced to the large class of multicriteria, multiagent 
problems which may be treated in the framework of game theory, both for static and dynamical 

systems, in the first two contributions by G. Leitman and A. Blaqui!ne. The formulation of the 
latter is so general as to encompass as specific cases the great majority of multi-objective, 

multiplayer problems that one may think of in cooperative, non-cooperative or mixed situations. 
J. Medanic gives an exhaustive solution, both in deterministic and stochastic cases, to the 

optimal regulator problem with vector valued quadratic performance, and applies the developed 

concepts to a multiplant cooperative control problem. 

The paper by W. Stadler imbeds both the static and dynamical vector optimization problem 

in the framework of preference optimality by borrowing techniques which have been developed 

mainly by mathematical economists, and so is able to give interesting sufficient and necessary 
conditions for optimality; vector optimization concepts are then applied to the design of 

minimally disturbing measuring devices for optimally controlled systems, and for optimal structural 

design in mechanics. A complete treatment of Domination Structures and Non-Dominated 

Solutions with an example of application to stock market behaviour is given by P.L. Yu. 

A Marzollo and W. Ukovich discuss some basic principles underlying the concepts of Vector 

Optimality and then give precise conditions, using the weakest hypotheses on the involved 

functions, for the characterization of "weakly" "ordinarily" and "strictly" Non Dominated 

Decisions, in the global, local and "differential" version. 

Specific economic relevance is stressed in the contribution of M. Volpato, who deals with the 
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optimal choice for the relative amounts of a specific good to be produced in various countries of a 

community in order to give the maximal community yield from the residual resources. Unlike the 

classical theory on the subject, non-linear conversion prices from one product to another are also 

considered. The problem may be solved explicitely for a rather general class of functions by using 

non·linear and dynamic programming techniques which are developed in the following 

contribution by G. Castellani. It is shown that in this framework the optimal production policy for 

the community is also economically optimal for each individual country. 

This sketch of the contents of this volume is by no means exhaustive of the various 

phylosophical approaches to Multicriteria Optimization contained therein, nor of the techniques 

which, as a consequence, are suggested for the solution of many varied problems. We express our 

hope that the volume as a whole will stimulate the reader to giving further thought to the 

conceptual and mathematical challenges offered by the present extension of optimality theory and 

provide him with some useful methods for solving problems in which different points of view are 

to be considered, or, to recall the title of this volume, to solve "Multicriteria Decision" problems. 

George leitmann Angelo Marzollo 



COOPERATIVE AND NON-COOPERATIVE 

DIFFERENTIAL GAMES 

G. Leitmann 

Department of Mechanical Engineering 

University of California, Berkeley 

ABSTRACT. Many player differential games are discussed for a 

cooperative mood of play in the sense of Pareto, and for a non­

cooperative one, in the sense of Nash. In the cooperative case, the 

results are equally applicable to the situation of a single decision­

maker with multi-criteria. Necessary as well as sufficient conditions 

for optimal play are considered. Some examples are presented to 

illustrate the theory. 
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1. INTRODUCTION 

1.1 Problem Statement 

We consider games which involve a number of players. The rules of 

the game assign to each player a cost fUnction of all the player's 

decisions and the sets from which these decisions can be selected. 

Let there be N players. Let J.(•) and D. be the cost fUnction and 
l l 

decision set, respectively, for player i. Then. 

where D C 

J.(•) : D-+ R1 
l 

N 
1T 

i=l 
D .• 

l 

i = 1,2, ... ,N (1.1) 

Loosely speaking, each player wishes to attain the smallest 

possible cost to himself. Thus, if there is a duE D such that for all 

i E {1,2, ... ,N} 

Yd ED (1.2) 

then du is certainly a desirable decision N-tuple (joint decision). Un-

fortunately, such a utopian (absolutely cooperative) decision rarely 

exists (e.g., Refs. 1- 3) and the players are faced with a dilemma: 

What mood of play should they adopt, that is, how should an "optimal" 

decision be defined? 

Here we consider only two moods of play, one cooperative and the 

other non-cooperative, in the sense of Pareto4 and Nash, 5 respec-

tively. 

1.2 Cooperative Play 

If the players decide to "cooperate" in making their individual 
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decisions, they can do so by adopting a joint decision as suggested by 

Pareto. There is more than one way of defining Pareto-optimality. One 

of these is given by 
N 

Definition 1.1. A decision N-tuple d0 ED, DC TI Di, is Pareto­
i=l 

optimal iff for every dE D either 

Yi E {1,2, .•. ,N} 

or .there is at least one i E {1,2, ••• ,N} such that 

J.(d) > J.(d0 ) 
~ ~ 

In this definition of Pareto-optimality cooperation is embodied in 

a statement such as "I am willing to forego a gain (a decrease in my 

cost) if it is to be at the expense of one of the other players (an in-

crease in his cost)." 

Alternatively, we can state the equivalent 
N 

Definition 1.2. A decision N-tuple d0 ED, DC TI D., is Pareto­
i=l ~ 

optimal iff for all d E D 

ViE {l,2, ... ,N} 

implies 

J.(d) = J.(d0 ) 
~ ~ 

ViE {1,2, ... ,N} 

9 

This way of defining Pareto-optimality leads to a statement such as 

"If a joint decision is not Pareto-optimal, then there is another 

decision that results in the decrease of at least one cost without in-

creasing any of the others." 
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In Figure 1.1 there is an illustration of a simple example of 

Pareto-optimality. Contours of constant cost for each player are 
N 

plotted in joint decision space, TI D.; the Pareto-optimal decision 
i=l 1 

N-tuples are points of tangency of cost contours. 

const. 

Fig. 1.1, Pareto-optimality 

There is yet another equivalent definition of Pareto-optimality. 

Let 

and 

y = {J( d) dE D} 

and 

A~ (J(d)) = {y E Y : y, - J.(d) ~ 0} - J(d) 
1 1 

That is, A~ (J(d)) is the non-positive orthant with vertex at J(d) minus 

its vertex. 

Then we have 
N 

Definition 1.3. A decision N-tuple d0 ED, DC TI Di' is Pareto­
i=l 
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optimal iff A~ (J(d0 )) n y = ~· 

This definition is illustrated in Figure 1.2. It is readily seen 

that cost N-tuples, J(d0 ), corresponding to Pareto-optimal decisions, 

d0 , belong to the boundary of the set of feasible costs, Y. 

y 

-----, < 
A=(J) I 

I 
I 

Fig. 1.2, Feasible Cost Set 

If cooperation is defined in the sense of Pareto then, given a 

decision N-tuple dE D with A~ (J(d)) n Y # ~. one can conclude that 

there is ad' ED such that J.(d') < J.(d) for some i E {l,2, ..• ,N} 
~ ~ 

~ 
where J(d') E A- (J(d)). That is, d' is "preferred" to d. However, 

nothing concerning preference can be said for decision N-tuples d'such 

11 
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that J(d') ~A~ (J(d)). Thus, only one orthant of cost space is utilized 

for comparing decision N-tuples. To overcome this restriction Yu has 

introduced the notion of 11 domination structures; 11 see the chapter 

Domination Structures and Nondominated Solutions by P. L. Yu. 

Another appealing way of defining optimality, related to Pareto­

optimality, involves the introduction of a regret function. Let duE D 

be a utopian decision N-tuple and suppose that J(du) ~ Y. Then define 

the p-th order regret function 

N 
R (J(d)) = { r (J.(d) - J.(du))p}l/p 

p i=l 1 1 

p E (l,oo) 

That is, the regret function is a measure of distance from the utopia 

cost J(du). Then we have 

Definition 1.4. A decision N-tuple de ED is a compromise decision of 

order p iff for all d E D 

R (J(dc)) ~ R (J(d)) 
p - p 

It is readily seen that every compromise decision is Pareto-

optimal, Figure 1.3. For a discussion of compromise decisions see Ref. 3, 
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J2 min 

Jl min 

Fig. 1.3, Compromise Decision ~or p = 2. 

Finally, it should be noted that the a~oregoing discussion applies 

equally well to the case of a single decision-maker with more than one 

cost function. 

1.3 Non-Cooperative Play 

If the players do not cooperate, but rather if each player strives 

to minimize his own cost regardless of the consequence to the other 

players, then each player is faced with a problem: In selecting his 

"best" decision, what should he assume about the other players' 

decisions? 
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In Nash's definition of optimality, every player assumes that each 

of the other players makes his decision only with a view toward 

minimizing his own cost. That is, whatever the decisions of the other 

players, he selects a decision that minimizes his cost; see Figure 1.4. 

Thus one has 

Definition 1.5. A dedision N-tuple de E 

iff for all i E {1,2, ..• ,N} 

for all d. E D. , where 
l l 

N 
1T 

i=l 
D. is a Nash equilibrium 

l 

Fig. 1.4, Nash Equilibrium 

Thus, a Nash equilibrium is characterized by the fact that no one 

player can improve his position (decrease his cost) by adopting another 

decision, provided the remaining players stick with their equilibrium 

decisions. Of course, that does not imply that by cooperating the 
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players might not be able to decrease some or even all of the costs 

without increasing any. 

An important class of Nash equilibrium games is that of two-person 

zero-sum games. In these games one player loses what the other player 

gains; that is, 

(1. 3) 

Hence, in terms of J(d), player 1 is the minimizer and player 2 is the 

maximizer. We have 

Definition 1.6. Decision couple de E D1 X D2 is a saddlepoint iff 

Two-person zero-sum games played on crossproduct decision sets, 

D1 X D2 , have a number of desirable properties not shared by nonzero­

sum games. Among these are, e.g., see Ref. 6: 

(i) If de and deare saddlepoints, then 

where Je is termed the Value of the game. 

e -e 
(ii) If d and d are saddlepoints, then 

(iii) J ~ J 

where 
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J = sup inf J( '\ ,d2) 
D2 Dl 

If a saddlepoint, de 
' 

exists 

( i v) J J = Je 

and 

( v) J(d~,d2) ~ J Vd2 E D2 

Thus, according to i), all saddlepoints are equivalent in terms of 

cost. According to ii), each player can choose any saddlepoint decision, 

in case of non-uniqueness, and still assure the Value of the game. 

Finally, in view of (v), by adopting a saddlepoint decision, a player 

can assure a cost, regardless of his opponents' decision, that is at 

least as favorable as the best he can guarantee. 

2. DYNAMICAL SYSTEM 

2.1 State Equation 

We are concerned with a dynamical system defined by its state, a 

point x ERn, which changes in a prescribed manner with the passing of 

timet E (-oo,oo); of course, any time-like variable can serve in place of 

time. The evolution of the state is controlled by N players. 

Given an initial state x0 at time t 0 , let T = t - t 0 • Furthermore, 

let the n-th component of x be t itself; that is, xn- t. 

Consider functions 

k ~ 
u (•) : [O,c1 ] + R k = 1,2, ... ,N 

and c1 functions 
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f( • ) : 
n+d + •• ,+d__ 

R 1 -N + Rn 

and let dot denote differentiation with respect to r. The evolution of 

the state is described by an absolutely continuous function 

satisfying a given state equation 

• 1 2 N X( T) = f( X( T) , U ( T) , U ( T) , , , , , U ( T) ) (2.1) 

2.2 Controls and Strategies 

The players influence the evolution of the state through their 

choices of the uk(r) for almost all r E [O,r1 ]. We consider two ways 

of making these choices: The players use either (relative) time T or 

state x(r) as the information on which to base their choices. 

In the former case, applicable in cooperative games, each player 

selects an admissible open-loop control; that is, player k chooses a 

Lebesgue measurable, bounded function 

In the latter case, applicable in non-cooperative games, each 

player selects an admissible closed-loop or feedback strategy; that is, 

player k chooses a Borel measurable, bounded function 

so that, in (2.1), 

+Since pk(•) is Borel measurable and x(•) is absolutely continuous, 

k 
u (•) defined by (2.2) is Borel and hence Lebesgue measurable. 
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In addition, admissible controls and strategies may be subject to 

constraints. For instance, given~~ R~, it may be required that 

and 

* 2.3 Playability 

Whether playing cooperatively or not, we suppose here that all 

players desire to steer the state from a given initial state x0 to a 

state on a prescribed target set e C Rn. We have 

Definition 2.1. A control N-tuple 

u(•) 1 2 N = {u (•),u (•), •.. ,u (•)} 

is playable at x0 iff it is admissible and generates a solution x(•) 

such that x( 0) x0 and x(T1 ) E e. A strategy N-tuple 

1 2 N n dl+d2+. · .+~ 
p( ·) = {p ( •) ,p ( •) , ••• ,p ( ·)} : R -+ R 

is playable at x0 iff it generates at least one solution x(•) such that 

x(o) = x0 , x(·) ~ e for' E [o,,1 ], and x(,1 ) E e. A corresponding 

triple {x0 ,p(•),x(•)} is termed a terminating play. 

2.4 Performance Index 

Associated with each player there is a performance index (cost 

function). For a cooperative game in which the players use controls, 

* For games, such as pursuit-evasion ones, in which one player 

desires termination while the other one does not, see "games of 

kind" in Ref. 13 and "qualitative games" in Ref. 15. 



Differential Games 19 

the costs depend on initial state x0 and admissible control N-tuple 

u(•), the corresponding solution x(·) being unique, whereas in the non-

cooperative case of the players employing strategies, the costs depend 

on initial state x0 , admissible strategy N-tuple p(•) and a correspond­

ing solution x(•). We take the cost for player ito be either 

Vi ( x0 , p( • ) , x( • ) ) 0 

. 1 N 
f~(x(T),u (T), ... ,u (T))dT ( 2. 3) or 

where 
. n+<\+·. ,+~ 

f~( •) : R ~ R1 is c1 . Of course, in the latter case 

k 
u (•) is given by (2.2) on some bounded interval [O,T1 ]. 

3. COOPERATIVE DIFFERENTIAL GAMES 

3.1 Pareto-Optimality 

For a dynamical system, Definition 1.1, for instance, becomes 

Definition 3.1. A control N-tuple u0(·), playable at x0 , is Pareto­

optimal iff for every control N-tuple u(•), playable at x0 , either 

0 
Vi(x0 ,u(·)) = vi(x0 ,u (·)) ViE {1,2, ... ,N} 

or there is at least one i E {1,2, ..• ,N} such that 

0 
vi(x0 ,u(•)) > vi(x0 ,u (·)) • 

3.2 Necessary Conditions 

By means of the following, readily established lemma and corollary 

(Ref. 7) one can reduce necessary conditions for Pareto-optimal control 

to ones for an optimal control problem with isoperimetric (integral) 

constraints (e.g., Refs. 8- 9). 

Lemma 3.1. If u0(·) is Pareto-optimal, then there exist a j E {1,2, ... ,N] 

and N-1 real numbers r. such that 
1 
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for all u(•) playable at x0 and subject to 

i "' j 
i 1 ,2, ... ,N . 

This lemma has the 

Corollary 3.1. 
0 

If u (•) is Pareto-optimal, then for all j E {1,2, ... ,N} 

for all u(•) playable at x0 and subject to 

V.(x0 ,u(·)) ~ v.(x0,u0(·)) 
l - l 

i # j i 1,2, ... ,N • 

3.3 Sufficient Conditions 

By means of the following, easily proven lemmas (e.g., Ref. 6) 

one can reduce sufficient conditions for Pareto-optimal controls to 

sufficient conditions for optimal control (e.g., Ref. 10). 

Lemma 3.2. Control N-tuple u0(·), playable at x 0 , is Pareto-optimal if 

there is an a E RN 

N 
L: 

i=l 

' 
a. > O, i = 1,2, ... ,N, such that 

l 

for all u( • ) playable at x0 . 

Lemma 3.3; Control N-tuple u0( ), playable at x0 , is Pareto-optimal if 
N 

there is an a ERN, a. ~ 0, i=l,2, ... ,N, and L: a. 1, such that 
l - i=l l 

having positive measure. 
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N 0 N 
E ct. V.(x0,u (·)) < E ct. Vi(x0 ,u(•)) 

i=l 1 1 i=l 1 

0 for all u( ·) 'f u ( • ) playable at xo. 

4. NON-COOPERATIVE DIFFERENTIAL GAMES 

4.1 Nash Equilibrium 

For a dynamical system, Definition 1.5 becomes 

Definition 4.1. A strategy N-tuple pe(•) is an equilibrium on X c Rn 

iff 

(i) it is playable at all x0 EX, and for all i E {1,2, ... ,N} and 

x EX 
0 

(ii) V.(x0,pe(·),xe(•)) ~ V.(x0 ,ip(•) ,xi( •)) for all terminating plays 
l - 1 

i ( ) { le( ) i-le( ) i{ ) i+le( ) Ne( ) } p. = p ••.•. ,p •• p • ,p ••... ,p • 

For two-person zero-sum games 

21 

and Definition 1.6 is similarly altered. In view of playability require-

ment (i), decision N-tuples in differential games are not members of a 

product o:f decision sets; hence, some of the desirable properties of 

classical two-person zero-sum games, listed in Section 1.3, need not 

hold (e.g., Refs. 11-12). 

4.2 Necessary and Sufficient Conditions. 

Necessary conditions and sufficient conditions for equilibrium 

strategies are rather lengthy and involved. For two-person zero-sum 

games, extensive discussions can be found in Refs. 6, 13- 17, among 
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others. For N-person nonzero-sum games, see Refs. 6, 18 - 19, 

Suffice it to say that, for sufficiently well-behaved equilibria, 

there are necessary conditions akin to the Minimum Principle of optimal 

control theory. However, because of the use of closed-loop strategies 

in place of open-loop controls, the adjoint (costate) equations contain 

terms which involve the equilibrium strategies. In two-person zero-sum 

games, it is often possible to suppress these troublesome terms, for 

instance, when the constraints are state-independent and satisfy certain 

constraint qualifications; this is not possible, in general, for non­

zero-sum games. Thus, it is well-nigh impossible to utilize necessary 

conditions in a constructive fashion to deduce candidates for equilibrium 

strategies. One exception is the class of so-called "trilinear games"20 

for which one can deduce a Nash equilibrium strategy N-tuple that 

depends only on time; such games occur in certain problems of micro-

economics21 , Another interesting class of equilibria arises in cer-

tain problems of bargaining (e.g., Section 5.2 and Refs. 22- 23); these 

are equilibria for which condition (ii) of Definition 4.1 is met tri­

vially. 

5. EXAMPLES 

5.1 Cooperative Bargaining during Strike 

Consider a bargaining process during a strike whose state at time 

, is defined by the offer by management, x(<), and the demand by labor, 

y(<), with initial demand exceeding offer, x(O) = x0 < y(O) = y0 . The 

strike ends at time T, the first time y(T) - x(T) = m > 0; that is, 

labor accepts an offer when it is sufficiently close to its demand. 
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Both parties desire a quick end to the strike, but labor wants to 

minimize the demand at settlement time, whereas management wishes to 

minimize the final offer. Thus, the costs to management and labor, 

respectively are 

k k = constant > 0. 1' 2 

k2 T - y( T) 

We suppose that the rates of concessions are proportional to the 

difference between demand and offer, and that the parties control the 

rates, Thus, 

and 

~(T) U(T)(y(T) - X(T)) 

y(T) = -V(T) (y(T) - X(T)) 

x(O) = x0 

y(O) =Yo 

where a and b are the maximum values of' management 1 s and labor 1 s 

controls, u(t) and v(t), respectively. 

23 

This bargaining process is considered as a cooperative game in Ref'. 

20 and all Pareto-optimal controls are deduced. 

Consider two parameters, a1 and a2 with a1 + a2 = 1, and let S = 

a1 - a2 and k = a1 k1 + a2 k2 • The set of' Pareto-optimal controls 

{u0(·) ,v0(·)} is found to be the following. For a1 > a2 (management 

"more important" than labor), we have two cases: 

Case I. k/Sb ~ m 

0 
u (T) = 

Case II. k/Bb < m 

0 for y(T) - x(T) ~ k/Sb , 

a for y(T) - x(T) < k/Sb , 
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0 0 
u (T) = o, v (,) = b 

The time at which management begins to make concessions (Case I) is 

l £n 
b 

Bb(y0 - x0 ) 

k 

This time does not depend on management's control limit a; however, the 

larger labor's control limit b (that is, the more rapidly labor is will-

ing to concede), the later management begins to concede. If either b or 

m is sufficiently large, so that k/Bb < m (that is, labor makes con-

cessions "rapidly" or is willing to settle when offer falls "appreciably" 

below demand), then management does not concede at all. 

For a1 < a2 (labor "more important" than management), the situation 

outlined above obtains with the roles of management and labor exchanged. 

Finally, if a1 = a2 (both parties "equally important"), both concede at 

maximum rate; that is, 

0 0 
u (<) =a, v (<) =b. 

5.2 Non-cooperative Bargaining during Strike 

As in Section 5.1, we consider a bargaining process during a strike. 

However, here we allow bargaining on more than one issue. That is x(<) 

andy(<) are n-vectors, being offer and demand, respectively, with 

x(O) = x0 , y(O) = y0 , and x0i < Yoi' i = 1,2, ..• ,n. Settlement occurs 

at a time T, the first time x(T) = y(T). 

+ 

+ 
Again, we take the costs for management and labor to be 

I 

v1 k1 T + £1 x(T) 

I 

v2 k2 T - £1 y(T) 

Prime denotes transpose. 
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where k1 and k2 are positive constants, and ~l and ~2 are n-vectors 

with positive components. 

* We denote the concession rates by 

i(T) = u(-r) 

y(T) = -v( r) 

25 

and consider a non-cooperative situation. That is, among a class of ad-

missible strategy pairs 
++ 

{~(·), v(•)}, where 

~(x(r),y(r)) = u(r) 

v(x(r),y(r)) = v(r) 

we seek a Nash equilibrium pair {~e(•),ve(•)} on {(x,y) E R2n 

0 < y. -X. < oo}, 
~ ~ 

It is readily verified that there is an equilibrium strategy pair 

/(x,y) = 

where z = y- x. For this equilibrium, condition (ii) of Definition 

4.1 is met trivially. Thus, by using his equilibrium strategy, a player 

fixes his opponent's cost. 

* This problem is treated in Ref. 20 where, however, it is assumed a 

priori that the concession rates depend on y(r) - x(r). A generali-

zation of this problem is in Ref. 21. 

++ As can readily be shown, the strategies do not depend on time. 
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In addition, we can draw the following conclusions: 

( i) All issues are settled simultaneously. 

( ii) The strike 
e II zoll 

duration is T = , where zo = Yo - xo, c 
kl 

+ 
k2 

ande 
zo 

c = i'e 'i""e = II z0 ll l 2 

(iii) 'The concession rate is given by dllzll = -c. 
d1 
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VECTOR-VALUED OPTIMIZATION IN MULTI-PLAYER 

QUANTITATIVE GAMES 

by 

A. BLAQUIERE, 

Laboratoire d'Automatique Theorique 
Universite de Paris 7 

Paris, France 

A. GLOBAL PROPERTIES OF A GAME SURFACE 

1. Vector Valued Optimization 

First, let us define aN-player quantitative game as in Ref. (1). 

Let there be given a set G, whose members will be denoted by x , 

ordered by a reflexive relation f.. , such that x' f.. x" or x" f.. x' whenever 

x' and x" are distinct members of the union of the domain and the range 

of f-. Let there be given prescribed sets Sa., a. = 1 ,2, ... N, whose members 

will be denoted by sa. , a. = 1 ,2, .•. N, respectively ; and let there be 

given a relation R CD x P(G), where D = G x s 1 x ••• x SN and P(G) is 

the collection of all non empty subsets of G • We shall suppose that 

(xi,s) Ry, where s = (s 1 , s 2 , ... sN)' (xi,s) ED, y E P(G), implies that 

(a) xi E y, and 

(b) 't:J X E y 

Members x of G are states of the game. Members sa. of Sa. , a.~ 1,2, ... N, 



are strategies of players Jet , et = 1,2, ... N, respectively. Members s of 

s 1 x ••• x SNare strategy N-tuples. Members y of RangeR are trajecto­

ries. If (xi,s) Ry, we shall say that trajectory y is generated from xi 

by strategy N-tup le s . xi is its initial point. 

Now, ln view of defining optimality of a strategy N-tuple, let there 

be given N reflexive and symmetric relations Cet C s2, S = s 1 x x SN , 

et = 1 ,2, ... N . If s C s' we shall say that strategy N-tuples s and s' are et 
comparable for player Jet . 

For instance, in a two-player game where optimality of a strategy 

pair is to be defined in the sense of Nash, we shall let 

(s1,s2) C1(s;,s~) 

(s 1 ,s2 ) C2(s;,s;) 

--
52 = 

51 = 

' 52 ' 
and 

' 51 

that is, for each player the comparison lS done for a fixed strategy, 

otherwise arbitrary, of the opponent player. 

If xP E y, y E Range R , we shall let 

p(y,xP) = { x: X E y , X ~ xP } 

and if xP and :>A are members of y such that xq ~ xP, we shall let 

X E y, 

Let us introduce 

Assu.11ption 1. If y E Range R and xP E y, then 

{ 
(xi,s) Rp(y,xi,xP) and 

(xP,s) Rp(y,xP) 

Asstn!lltion 2. 

( xi , s ' ) R y ' , and 

(xj,s") Ry", and 

xj E y' 

There exists s E S such that (a) 

(xi ,s) R (p(y' ,xi ,xj) u y") 
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and (b) 

{ 
sC s' , and 

s'C s" '* 
Cl. 

Cl. 
sCas" 

a E {1, 2, •.. N} 

and s' = s" '* s = s' = s" 

If there exists ~, xj E y, y E Range R, such that xJ ~ x for any 

x E y, then we shall say that xj is the end point of y. Let there be 

given a subset e of G, namely the taPget set. A trajectory y will be 

called a path and denoted by y if none of its members,with the possible 

exception of its end point when it exists, belong to e. 

Finally, let there be given N linear spaces n , a = 1 ,2, ••• N, refle­
a 

xi ve relations (;;;.) , (;;;.) C fl2 , a = 1,2, ... N, and mappings Va , 
a a a 

a= 1,2, ... N 

1-+ V (xi,s,y) 
Cl. 

a=1,2, ... N 

V 1s the pePfomance index of player Ja, and Va(xi,s,y) is the pay-off 
Cl. • 

of player J for a trajectory y generated from x1 by strategy N-tuple s. 
Cl. 

(;;;.) is the pruference ruZationt of player J 
Cl. Cl. 

We shall say that a strategy N-tuple s is pZayabZe at state xi if 

there exists a path y such that (xi ,s) R y and y n 8 =#= 1/l • We shall denote 

by J(xi) the set of all strategy N-tuples playable at state xi. Apathy 

such that y n e =#= 1/l is called a ter-minating path. We shall denote by 

I(xi,s,e) the set of all terminating paths generated from a state xi by 

a strategy N-tuple s 

t A preference relation need not be transitive. 
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Then, we shall say that a strategy N-tuple s * is C- optimaL at 

state x1 , C = (C 1 ,C2 , ... CN), if 

( i) s * E J (xi) , and 

(ii) there exists w = (w 1, w2 , ••. wN) E r.l, r.l = r.l 1x ••• x r.lN, such 

that 

. * * * i * V( x 1 , s , y ) = w 'tj y E I (X , s 'e) 

where V = (V 1 , V2 , ••• VN), and 

* i * i * i (V 1(x !• v2 (x ), ... VN(x )) = w 1s the value of the 
l game at state x ; and 

(iii ) * i i -V (x )(;;:.) V (x ,s,y) 
ex ex ex 

Vs such that s E J(xi) and sC s* 
ex ) a = 1 ,2, ••• N 

and 
- i 

VY E l(x ,s,e) 

• i 
We shall denote by J (x ) the set of all strategy N-tuples C-optimal at 

state x1 • At last aN-player quantitative game is defined by 

(G,~' J, R, C, ~~.{(;;:.),a= l,2, ... N}, V, 8). 
ex 

In addition to Assumptions 1 and 2 we shall introduce 

Assumption 3. For any (i ,s' ,y') and (xj ,s",y") such that (xi ,s') Ry' 

and (),s") Ry" and xj is the end point of y' 

V( xi ,s' ,y') + V(xj ,s" ,y") = V(xi ,s,y) 

where y = y' U y" and s is a strategy N-tuple such that (xi ,s) R y and 

condition (b) of Assumption 2 is satisfied. 

2. Surface of the game 

In the following we shall suppose that there exists a strategy 

N-tuple s* which is C -optimal at state } , and we shall denote by X the 

set of all states x at which s* is C-optimal. 

We shall define (>)a, a E {1,2, ... N}, by 

II 
w = 

C! 
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Then we shall let 
wl >w 

II wl(>) II 1 ,2, ... N <=> wa • a = a a 
I 

( w; • I I) n, II ( II w~ • ••• w;;) E n w = w2, .. ·~ E w = w,' 

Now let us define the set E (C), CEQ,by 

E(C) = {y = (x0 ,x): (X ,x) E Q X G, X + v*(x) = C} 
0 0 

E(C) is the surface of the game for given c. 

Let us define also a set Ea(Ca), c E na' namely 
(). 

E ( C ) = {y = (X X): a a a oa' * (x ,x) E nN X G, X + v (x) = c } oa ..... oa a a 

a E { 1 ,2, •.. N} . 

E ( C ) will be called an a- surface of the game. 
(). (). 

Note that, in the definitions of E(C) and E (C), v* and v* 
(). (). (). 
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a= 1,2, ... N, are mappings X-+- nand X-+- n , a= 1,2, ... N, respectively. 
(). 

In connection with the definition of E(C), C = (c1,c2 , ... CN) En, 

we shall define the sets A/E(C) and B/E(C) by 

A/E(C) = {y = (x0 ,x): (x0 ,x) E Q x X, x0 + v*(x) > C} 

B/E(C) = 

3 a E { 1 ,2, ••• N } , C (;;;.) X 
a a oa 

x0 N, x) E n 

* + V ( x) } 
(). 

X X, 

A point y E A/E(C) is called an A-point, and a point y E B/E(C) 

is called a B-point, relative to E(C). 

In connecti9n with the definition of E (C ), 
a a 

C E Q , we shall 
a a 

define the sets A/E (C) and B/E (C), namely 
a a a a 

A/E (C ) = {y = (x ,x): (x ,x) E Q x X, 
a a a oa oa a 

B/E ( C ) = 
a a 

= ( x ,x): 
oa 

a E { 1 ,2, ••• N } • 

(x ,x) E n X X, 
oa a 

x + v*(x)(>) c } 
oa a a a 

C (;;;.) X + y* (X) } 
a a oa a 

A point y E A/E (C ) is called an A-point, and a point 
a a a 

y E B/E (C ) is called a B-point, relative toE (C ). 
a a a a a 
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At last, we shall consider the mappings 

{ n X X -+ n 
<I> a. a. 

a. 
( x ,x) t--+ <1> (y ) * y = = X + V ( x) a. oa. a. a. oa. a. 

and r"' + n <I> 
y = (x0 ,x) t--+<l>(y) * :X + V ( x) 

0 

and we shall denote the transforms of A/r. ( C ) and B/r. ( C ) , under the 
a a a a 

mapping <I> , by A( C ) and m, respectively. Likewise, we shall denote a a a. 
the transforms of A/'l.( C) and =B/-r:r.o-~(-,c"'"), under the mapping <1>, by A( C) and 

B(C), respectively. 

From now on, we shall let Z 

and z* n X X, CJ. = 1 ,2 ' ... N . a a 

n x G, and z* = n x x, and za = na x G, 

3. Trajectories and paths in P( Z) t 

For any (i,s) ED and for any y E RangeR such that (i,s) Ry, and 

for any c En, we shall define a trajeatory r{y,yi,s) in P(Z) by 

x0 E Q, X E y, x + V(x,s,p{y,x)) = C} 
0 

We shall say that r(y,yi ,s) is generated from initial point yi by stra­

tegy N-tuple s . A trajectory r{y,yi ,s) will be called a path in P(Z) if 

y is a path. It will be called a terminating path in P(Z) if y ~s a 

terminating path, in Which case r{y,yi ,s) reaches the set E): Q X 8. 

We shall define an a.-trajeatory r {y,yi,s) in P(Z )tt by 
a a. a. 

t P(Z) is the collection of all non empty subsets of Z 

tt P(Z ) is the collection of all non empty subsets of Z a a 
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f (y,yi,s) = {y = (x ,x): X E Q, X E y, X + V (x,s,p(y,x)) C } 
Ct Ct Ct OCt OCt Ct OCt Ct Ct 

C = x1 + V ( i, s, Y) 
Ct OCt Ct 

Again, we shall say that f 0 (y,y~,s) 1s generated from initial point 

y~ by strategy N-tuple s, and r (y,yi ,s) will be called an a-path in 
"" Ct Ct 

P(Z ) if y is a path. 
Ct 

We shall say that a path f(y,yi ,s), or an a-path r (y,yi ,s), 
• iii • i• ct Ct 

optimal if s = s E J (x ) and y = y E I(x ,s ,e). 

4. Lenuna 1. 

Let us in traduce 

Assumption 4. For any wa' w E Q 
a a 

et E { 1 ,2 , ••• N } , 

(w' + w )(;;;.) (w" + w ) ~ w' (;;;.) w" 
a a et a a a a a 

Then we have 

15 

Lenuna 1. If s '* 1 s C- optimal at state l 
X ' 

• i • 
andy E I(x ,s ,e), and 

J. • • 
X E y , then S lS C- optimal at state xj 

P~oo6. Clearly, s* is playable at state xj. Let -y" E I( j * ) x ,s ,e and 
- • i J. - - i • -
y' = p(y ,x ,x ) and y = y' u y 11 • From Assumption 2 we have (x ,s )Ry, 

- i • 
and indeed y E I ( x ,s , e). From Assumption 3 and condition ( ii) re-

• • gardlng s , we have 

i ·- * i i ·- j ·-V( x , s , y) = V ( x ) = V( x , s , y' ) + V( x , s , y") , and 

i • • • i V(x ,s ,y )= V (x ) = 

and accordingly 

i • - .i '* * j) V(x ,s ,y') + V(r ,s ,p(y ,x ) 

j ·- j '* * j) V(x ,s ,y") = V(x ,s ,p(y ,x ) 

• • 
Now let Y"e I(xl,s",e) and s"C s for a E {1,2, ••. N} Let 

• • Ct 

yt = p(y*,x1 ,xJ) andy= yt u Y". From Assumption 2, there exists a 

* i - - i 
strategyN-tuple s, sC s, such that (x ,s)Ry, andindeedyE I(x ,s,e). 

Ct 

From Assumption 3 we have 
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V (xi ,s,y) = V (xi ,s*,yt) 
a a 

i * * i ·-v (x ,s ,y )=V (x ,s ,y') 
a a 

+ V (xj ,s",Y") and 
a 

j * • j + V (X , S ,p ( y ,X ) ) 
a 

At last, from Condition (iii) and Assumption 4, we obtain 

j * • j j "-v (x ,s ,p(y ,x ))(;;a.) V (x ,s ,y"), 
a a a 

a E { 1 ,2 , ••• N } • 

Hence Lemma 1 is proved. 

5. A fundamental property of game surfaces 

A fundamental property of game surfaces is embodied in 

A. Blaquiere 

Theorem 1. No point of an a-path 
- i r (y,y ,s), o a generated from i = (x ,i) 

a oa 

by strategy N-tuple s, such that 
~ -

(x ,s)Ry, C * * J*( xi)' s s , s E 
a 

a E { 1 ,2, •.• N } , is an A-point relative to the a-surface of the game 
. . . . - i * 

through y~ ; and, furthermore, if yJ = (xJ ,xJ) E r (y,y ,s) n Z then 
. a a oa a a a 

yJ is a B-point relative to that a-surface. 
a 

PJWo6. Let xj E y . 
Theorem 1 is trivial. 

* * j j If s ft. J ( x ) , then x ft. X and the conclusion of 

* j * let y E I(x ,s ,e). 

Accordingly let us suppose that s* E i''(xj) and 

We have 

J .•• *J. 
V (x s y ) = V (x ) 

a ' ' a 

Let Y' = p(y,i ,xj) and 

exists a strategy N-tuple s" 

Assumption 3 we have 

y" = y' u y*. From Assumption 2; there 
i - * such that (x s") Ry" and s"C s • From 

' a 

~ -, 
V (X S 11 y") 

a ' ' 

and from Condition (iii) regarding s*, since s"C s*, we have 
a 

• i i -V (x )(;;a.) V (x ,s",y) 
a a a 

Then, from Assumption 4 we obtain 

v*(i)- v*(xj)(;;a.) v (i,s,yt) 
a a a a 

Now, let j j j) (- i ) y = ( x ,x E r y ,y ,s , and 
o. oo. a a 

(1) 
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From the definition 

c' = xj 

- l 
of r (y,y ,s) we have 

a a 

a oa 
j - j 

+ V (x ,s,p(y,x )) 
a 

and from Assumption 3 it follows that 

i ( i -.-) v ( j (- j ) ) = c' x + V x ,s,y + x ,s,p y,x 
oa a a a 

From (2) and (3) we have 

i -
V (x ,s,y•) = 

a 

and ( 1) rewrites 

vll\i) 
a 

i 
- X 

oa 

From ( 4) and Assumption 4 we deduce 

(2) 

( 3) 

(4) 

xi + V~(i)(;;;.) xj + V~(xj) (5) 
oa a a oa a 

Let E ( C ) be the a -surface of the game through y1 , we have 
a a a 

i + v*(i) = c 
oa a a 

so that (5) rewrites 

C (;;;;.) xj 
a a oa 

It follows that 

Yj E B/E ( C ) 
a. a. a. 

which 1n turn implies that 

Hence Theorem 1 is proved. 

( 6) 
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Corollary 1. No point of a path r(y,y1 ,s) generated from yi = (xi ,xi) by 

i * * * . 0 strategy N-tuple s, such that (x ,s) Ry, sC s , s E J (x1 ), 
a . 

a. E { 1 ,2, ... N } is an A-point relative to the game surface through y1 , 

and, furthermore, if yj E r(y,yi,s) II z* then yj is a B-point relative 

to that game surface. 



42 A. Blaquicrc 

Corollary 1 lS a direct consequence of Theorem 1 and the definition 

of A/Z(C) and B/Z(C). 

Theorem 2. An optimal a-path in P(Z ) emanating from yl has all of its 
a . a 

l 
points in the a-surface of the game through y . 

a 

Theorem 2 is a direct consequence of Lemma 1. 

Corollary 2. An optimal path in P(Z) emanating from yl has all of its 
l 

points in the game surface through y . 

Corollary 2 is a direct consequence of Theorem 2 and the definition 

of a game surface. 

B. LOCAL PROPERfiES OF A GAME SURFACE 

6. Contingent of a set 

Let Q be a non empty subset of a normed linear space E. We shall 

say that t, tEE, is tcvgent to Qat z, z E E. if the following condi­

tion is fulfilled. 

There exists an infinite sequence in E, 

T = {tv : v = 1 ,2,. . . and il tv - t II + 0 as v .... oo} 

and an jnfinite sequence of strictly positive numbers 

E = v = 1,2, ... and as v+oo} 

such that 

\) = 1 ,2' ... 

Tlle contingent of Q at z lS the set T(Q,z) 

'r(Q,z) = { z + t : t is tangent to Qat z} 

7. Directional Preference on a contingent 

Let ;.. be a preference relation on Q, and let z E Q. If there exists 

an infinite sequence T and an infinite sequence£ such that z+£vtv E Q 

and z + £vtv;.. z, v = 1,2, ... , ive shall let 
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t ... 0 

and, if there exists T and e such that 

z + evtv E Q and z;;;. z + evtv, 

we shall let 

t.;;; 0 

v = 1 ,2, •.. 

43 

We shall say that ;;,_ is a directional preference induced by ;;;. on T( Q, z). 

8. Contingent of an a.-surface of the gare 

Let us introduce 

AssumptionS. Q for a= 1,2, ••• N, and G, are normed linear spaces. 
a 

We shall say that a pointy = (x ,x) e E (C ), a E {1,2, ••• N }, 
a oa a a 

is an interior point of E ( C ) if x is an interior point of X • 
a a 

(a) 

(b) 

We shall say that ya is nice if 

y is an interior point of E (C ) ; and 
a a a 

there exists a positively homogeneous of order one, and continuous 

mapping 

L ( x· • ) a , 

and an open ball B(x,r) C X of radius rand center x such that, for all 

x + en e B(x,r) where e is a strictly positive number and n e G, 

v*(x + en) = v*(x) + L (x ; en) + o(e,nl 
a a a 

where llo(e,n)ll + 0 uniformely inn as e + 0. 
e 

For y = (x ,x) E z* 
a oa a 

a E {1,2, ••• N}, we shall define 

grad~ (y ) by 
a · a 

grad~ (y ) = ( 1, L (x;•)) 
a a a 

and for any t = ( n ,n) E Zn we shall let 
a oa .... 

grad~ (y )•t = n +.L (x;n) 
a a a oa a 

Lemma 2. If y = (x ,x) is a nice point of E (C ), C en , 
a oa a a a a 
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a E { 1, 2, ... N } , then 

T(l: (C ),y) 
a o: a 

{y + t : grad 1> ( y ) o t = 0 } 
a a a o: a 

PJtoo6 • Lett = (n ,n) be tangent to l: (C ) at pointy . Then, there 
a oa a a a 

exists an infinite sequence in Z 
a 

a = 1 ,2, ... and II tv- t II ~ 0 as v ~ oo } 
a a 

and an infinite sequence of strictly positive numbers 

\) = 1,2, ... and £ v ~ 0 as v~oo} 

such that 

\) = 1,2, ... 

It follows that 

v v) + o( v v) = C £ n £ ,n , 
a 

II o ( £ v, n v )II 
where ~ 0 as v ~ oo • 

\) 
£ 

Since x 
Oct 

* + V ( x) 
a 

c 
·ct 

we obtain 

£vnv + L (x; £vnv) + o(£v,nv) = 0 
oa. a 

Dividing by £v, then letting v ~ oo , we obtain 

n + L ( x ; n) = grad <I> ( y ) o t = 0 
oa. a a a a 

( 7) 

\) = 1 ,2 , .. 

( 8) 

Conversely, let ( 8) be satisfied and let {£ v : v = 1 ,2, ... } be some 

infinite sequence of strictly positive numbers such that £ v ~ 0 as v ~ oo. 

Since L (x;o) is positively homogeneous of order one, we have 
a 

£vn +L(x;£vn)=O, v=1,2, .. 
oa a 

and s1nce x + v*( x) C , we have 
oa. a a 

X + £\)n + v*(x) + L (x . £\)n) = c 
oa. o a a a ' a 

v = 1 ,2, .•• 

It follows that, for v sufficiently large, 

X + £\Jn + v*(x + £\Jn) + 0(£\J,n) = C , V = 1,2, ... 
oa o a a a 

llo(£v,n)ll where ~ 0 as v ~ oo 
£\) 
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This condition can be rewritten 

X + EV(n + o(EV,n)) + v*(x + EVn) : C 
oa oa v a a 

v = 1,2, ... and since 
E 

(n + o(Ev,n) ,n)-+ t 
oa E v a 

as v -+ oo , it follows that 

y N + t E T( L ( c ) ,y ) 
~ a a a a 

which concludes the proof of Lemma 2. 

Now, if t = (n ,n) lS tangent to B/E (C ) at point 
a oa a. a 

y N = ( x ,x) E E ( C ) , relation ('r) is replaced by 
~ oa a a 

VV * \IV C (;;;;,) X + E n + V (X + E n ) , 
a. a oa oa a 

and from the definition of~ we have 
a 

X + E\lnV + v*(x + E\lnV) = ~ (y 
oa oa a a a 

\} = 1,2, ... 

Since yN is a nice point of E (C ), (9) rewrites 
~ a a 

c (;;;;.)X + \} \} + v*(x) + L (x; E\}n\)) + o(E\},n\}) 
a a oa E noa a a 

\} = 1,2, ••• 

and ( 10) rewrites 

~ (y ) + Ev(nv 
a a oa 

( 9) 

( 10) 

( 11 ) 

Note that, Slnce y E E (C ), we have ~ (y ) = C . As v + oo Ev + 0, 
a a a a a a 

and 

-+n +L(x 
oa a 

n) 

and accordingly 

C + n + L ( x ; n) = C + grad ~ ( y ) • t E T( 8( C ) ,C ) 
a oa a a a a a a a 

From ( 11 ) , by letting v + oo , we deduce that . 
o(;;;;.) grad~ (y )•t 

a a a a 
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where (~) is the directional preference induced by (;;;;.) on T(src-),C ). 
a a a a 

Hence we have 
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Lemma 3. If y = (x ,x) ls a nice point of L (C ), C E ~ 
Cl. OCI. Cl. Cl. Cl. Cl. 

a. E {1,2, ... N}, then 

ya. + t E T(B/L (C ),y ) 
Cl. Cl. Cl. Cl. 

C + grad <I> ( y ) • t E T ( B(C1, C ) , and 
Cl. Cl. Cl. Cl. Cl. Cl. 

0 (;;;,) grad <I> ( y ) • t 
Ol Cl. Cl. Cl. 

where (;) lS the directional preference induced by (;;;.) on T(B{'C;) ,C ). 
Cl. Cl. Cl. Cl. 

9. Theorem 3 

Let yl = (xl ,xl) E L (C), C E ~, a. E {1,2, ••. N} and 
Cl. OCI. Cl. Cl. Cl. Cl. 

* i * i consider an optimal a-path r (y ,y ,s ) emanating from y From 
a a a. 

Theorem 2 we have 

* i * r ( y ,y , s ) c L ( c ) , 
a. a a. a. 

Let us define the Peaahable set E (yi) from yi by 
a a. a 

{ y = ( x x) : 
a. oa' 

such that sC s* and (i ,s) Ry, and 
Cl. 

yN E r Cy,yi ,s)} 
u. Cl. Cl. 

. . . * 
(x-J ,x-J) E r (/,yl,s ), be a nice point OfL (C). 

oa. a a a a 

If yj + t E T(E (i),yj), then there exists an infinite sequence 
a a a a a 

ln Z , namely 
ct 

v v = 1 ,2, . . . and II t - t II -+ 0 as v -+ oo } 
ct Cl. 

and an infinite sequence of strictly positive numbers 

{ £v v = 1,2, ... and £v-+ 0 as v-+ oo} 

such that 

and, 

y.l + £vtv E E (i) v = 1,2, •.• 
a a a a 

from Theorem 1 and the definition of E (yi), it follows that, 
ct ct 

for v sufficiently large 
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Hence 

'l'hen, from Lemmas 2 and 3 we have 

Theorem 3. If yj is a point of an optimal a-path r (y*, yo.1 , s*) c T (C ) 
a. a a a 

. 1 
emanat1ng from y 

(J. 

::: ( i i) ) j x ,x EI:(C: ,andify isanicepoir.tof 
oa a. a a 

I: ( C ) , then 
(J. (J. 

~ 0(~) grad~ (yj)•t 
a a. a a 

where 6) is the directional preference induced by (;;;.) on T(8(C ) ,C ) . 
a a a. a. 

Furthermore, if yj + t* E T(r (y*, 
a a a 

then yj + t* c T(E (C ), yj) and 
a a. · a. a a. 

0 ::: grad <I> ( yj ) • t * 
a a a 

The last part of Theorem 3 comes from the fact that 

* i * r (y , y ,s ) c I: (C ) and from Lemma 2. 
a a. a.a. 

C. I\I'ECESSARY ffiNDITICJ.JS OF OPTIMi\LITY OF A STRATEGY N-TUPLE 

10. Transfer of a contingent 

First let us introduce 

Assumption 6. For any real strictly positive number k, 

kw'(;;o.) kw" <==> w•(;;o.)w" , a= 1,2, ••. N. 
a (J. (J. a a a 

Then we have 

Lemma 4. If ya E Ea(Ca), a E {1,2, ••• N}, and ta = t 1a+ t 2a., where 

t 10 is such that 
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Y + t 1 E T( I: ( C ) , y ) , and 
a a a a a 

n e n 
oa a ' 

O(~) n 
a oa 

where (~} is the directional preference induced by (~} on 
a a 

T( B( C ) , C ) ; then 
ot ot 

y +t E T(B/I: (C), yN} 
a a a a "' 

0(~) n implies that there exists an infinite sequence in n ' 
a oa a 

namely 
v v 

{n: v=1,2, ••. andlln -n II+Oasv+oo} 
oa oa oa 

and an infinite sequence of strictly positive numbers 

{ E v : v = 1 ,2,. . • and E v + 0 as v + "" } 

such that 

c (~} C + e:vnvoa 
a a a 

Then, from Assumption 4 we have 

0(~) E V V 
a noa 

and from Assumption 6 we have 

v = 1 ,2 •••• 

v = 1,2, .•• 

v = 1 ,2 •••• ( 12) 

Since y + t E '!'(I: ( c ) , y ) , there exists an infinite sequence in Z , 
a 1a a a a a 

v = 1,2, .•• and llt~a -t 1all + 0 as v +"" } 

and an infinite sequence of strictly positive numbers 

{~ v = 1,2, . . . and ~ + 0 as v + "" } 

such that 

X + e" ~ + y* (X + ~ ~) = C 
Oct Oct ot 

( 13) 

From (12) and Assumption 6 it follows that 
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0(~) a~ n~a ( 14) 

and from (13), (14) and Assumption 4 we have 

C (-...) X -41 (-"J \1 ) 'Jk( -\1 -\1) , + E n + n + v x + E n 
a a oa oa oa 

( 15) 

where (~ + n \1 ' n\1) + t = t + t as \1 + a> • 
oa oa a 1a 2a 

At last, from (15) it follows that 

y + t E T(B/E (C ), y ) 
a a a a a 

which concludes the proof of Lemma 4. 

Now, let yi = ( i , i ) E E ( C ) , C E fl 
a oa a a a a 

a E { 1 ,2, ••. N } , and 

* i .. ) i consider an optimal a-path r (y ,y ,s emanating from y • 
a a a 

From 

Theorem 2 we have 

.. i .. 
r (y ,y ,s ) c E (C ) 

a a a a 

Let us introduce 

Assumption 7. * i .. For any y E r (y ,y ,s ), yN = (x , x), there exists 
a a a .... oa 

a non singular mapping A(xi,x ; •) 

A( xi ,x ; •) { 

G + G 

such that 

Y + ( n , n ) E T( E ( C ) , y ) ,. 
a oa a a a 

i -1 i i 
Y + ( n , A ( x ,x ; n ) ) E T( E ( C ) , y ) 

a oa a a a 

-1 i i 
where A ( x ,x; •) is the inverse of A(x ,x; •) ; that is 

( i i n = A x ,x; n ) i -1 i = n = A ( x ,x ; n) 

First, let us prove 

Lemna 5. If' Assumption 7 is satisfied and if Ya , 
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* i * y E r (y ,y ,s ) c E (C ), is a nice point of L (C ), then 
ct ct ct ct ct ct ct 

y + (n ,n) E T(B/E (C), y) => 
ct Oct ct ct ct 

~ -1 i i 
y + ( T) , A ( x , X ; T)) ) E T ( B/ E ( C ) , y ) 

ct Oct ct ct ct 

Let us suppose that y + t E T(B/E (C ), y ), t 
ct il il il ct il 

then there exists an infinite sequence in Z , namely 
il 
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{tv= (nv, nv): v = 1,2, ... andlltv-t II -+0 as v -+oo} 
il Oil il a 

and an infinite sequence of strictly positive numbers 

{Ev: v=1,2, ... andEv-+Oasv-+oo} 

such that 

v=1,2, •.. 

that is 

v = 1,2, ... 

Since y ~s a n~ce point of E (C ) it follows that 
ct ct a 

C (~)X + EVT)V + v*(x) + L (x; EVT)V) + o(EV,T)V) (16) 
a ct Oil oct a il 

v=1,2, ••• 

-+ 0 as v -+ "' . 

Since * x + V (x) = C , ( 16) rewrites 
Oil il ct 

( 17) 

and since 

n~ct + Lct(x ; nv) -+ n0 il + Lct(x n) as v-+"' 

it follows from (17) that 
. 

0(~) n + L (x n) 
il Oil ct 

( 18) 

Now let 

t = t + t 
il . 1il 2il 
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t 2a = (n0 a + La(x ; n),O) 

One can readily verify that 

grad~ (y )•t1 = 0 
a a a 

and hence, from Lemma 2 

y + t 1 E T( E ( C ) , y ) 
a a a a a 

On the other hand we have 

i + ( A-1( i n)) = Ya noa' x ,x ; 

( 19) 

i -1 i 
Y + ( - L ( X ; n ) , A ( X , X n ) ) + ( n + L ( X ; n ) , 0 ) ( 20 ) 

a a oa a 

Since 

y +t1 =y +(-L(x;n),n)ET(E(C),y) 
a a a a aa a 

it follows from Assumption 7' that 

i -1 i y + (-L (x;n), A (x ,x; n)) E T(E (C ),y) 
a a a a a. 

At last, from (18), (20), (21) and Lemma 4, we have 

i + (n , A- 1(xi,x; n)) E T(B/1: (C ),yi) 
a oa a a a 

which concludes the proof of Lemma 5. 

11. Theorem 4 

At last we have 

( 21) 
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Theorem 4. 
• • • iC 

If yJ is a point of an optimal a-path r (y ,y1 ,s ) c E (C ) 
a a a a a 

. i ( i i) ( ) emanat1ng from y = x ,x E E C , C E Q , 
a oa a a a a 

a E { 1,2, ••• N} , and 

if yi and yj are nice points of E (C ) , then 
a a a a 

(a) 

(b) j •• •i-tc j •.• 
y +( n , n ) e T( r( y ,y , s ) ,y ) => o = n + A ( xJ ; n ) a oa a a oa a 
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f 
Furthermore, if y a. is the terminal point of 

f * i *) that lS y = f (y ,y ,s () EJ, then 
a a a 

A Blaquiere 

* i * r ( y ,y , s ) 
a a 

(c) f f f 
~cr=n +A.(x;n) 

oa a 

* where, for any x E y 
l -1 i 

A.(x;•) =L(x ;A (x,x;•)) 
a a. 

PJtoo6. 

a nice point of l: (C ) , from Theorem 3 we have 
a a 

Then from Lemma 5 it follows that 

l A-1( i j 
ya+(noa' X ,X ; n) ) E T(B/l: ( C ) , 

a a 

At last from Lemma 3 we deduce that 

i 1 . . 
0 (;;;.) no a + L (x ;A- (x\xJ ; n)) 

a a 

that is 

0 (;;;.) 
a no a + A. ( xj 

Cl 
; n) 

Hence, condition (a) of Theorem 4 is proved. 

i) 
ya 

Now let j * ( ( * i *) j) * --y + t E T r y , y , s , ya , t 
Cl Cl Cl Cl Cl 

From Theorem 3 we have 

From Assumption 7 it follows that 

i * -1 i . * y + ( n , A ( x , xJ ; n ) ) E 
Cl 0 Cl 

Then from Lemma 2 it follows· that 

Since yj is 
·a 

* * ( n oa' n ) • 
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0 
i( 

L (i A-1( i j n*)) = no a + X ,x a 

• + A () n *> = no a ; a 

which proves condition (b) of Theorem 4. 

At last let 

From the definition of a contingent it follows that 

f + t f E T( E ( C ) , l) . 
ya a a a a Then from Assumption 7 we have 

and from Lemma 2 we have 

0 = f 
+ L (x i A-1( i f n f)) 

no a Cl. 
X ,X 

f + A (X 
f nf) = no a Cl. 

which concludes the proof of Theorem 4. 
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MINIMAX PARETO OPTIMAL SOLUTIONS WITH 
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ABSTRACT 

A particular Pareto optimal solution, related to a class of minimax prob­

lems and therefore cal led the minimax Pareto optimal solution, is defined, 

analysed and applied to the study of cooperative solutions in problems 

described by 1 inear dynamic systems and by vector-valued quadratic cri­

teria. Four related topics are considered: (a) solution of the determi­

nistic I inear regulator problem with a vector-valued criterion, (b) con­

vex approximation of the solution of the Riccati matrix differential 

equation, (c) solution of the stochastic I inear regulator problem with 

a vector-valued ~riterion, and (d) the multiple-plant cooperative con­

trol problem. 
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Pareto optimality is the solution concept employed in vector valued 

optimization problems and in cooperative multiplayer games. In these notes 

a particular Pareto optimal solution, called the minimax Pareto optimal 

solution, is defined, analysed and applied to the study of cooperative 

solutions in control problems involving linear systems and vector-valued 

quadratic criteria. 

The notes synthesize results described in [1,2,3,4] with corrections 

and clarifications ad discussed in [5,6]. Four topics are discussed: 

(i) solution of the deterministic linear regulator problem with a vector­

valued criterion, (ii) convex approximation of the solution of the Riccati 

matrix differential equation, (iii) solution of the stochastic 1 inear re­

gulator problem with a vector-valued criterion, and (iv) the multiple­

plant cooperative ~ontrol problem. An essential feature of (i) is the 

decomposition of the space of initial conditions of the state with res­

pect to the nature of the control. This decomposition is induced by the 
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maxi mi zat ion of the associ a ted r~i n function over the simp I ex of admissible 

Pareto multipliers. Maximization of the min function is nontrivial due to 

the involved dependence of the solution of the Riccati matrix differential 

equation on the Pareto multipliers. The convex approximation studied in 

(ii) is introduced to enable the approximate maximization of the min 

function in the class of linear-quadratic problems. The convex approxima-

tion is then used to study the stochastic linear regulator problem with 

a vector-valued criterion. The multiple-plant cooparative control problem 

is a separate but related application of the same methodology. 

2. LINEAR REGULATOR PROBLEM WITH VECTOR-VALUED CRITERION 

2. 1. Introduction- the Linear Regulator 

Consider the class of dynamic control problems defined by the linear 

system 

x = Ax + Bu, x(t ) 
0 

X 
0 

and by the collection of performance criteria 

. 1T T T 1 T 
J (u,t ,x )=-J (x Q.x + u R.u)dt + -2x(T) F.x(T) , ie:S 

0 2 I I I 
t 

0 

where x(t) is the n-dimensional state and u(t) is them-dimensional 

(1) 

control at timet and A, B, Qi' Ri and Fi are matrices of appropriate 
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dimensions and Q1 2 0, F. > 0, R. > 0. Moreover, the pair (A,B) is camp-
I- I 

T letely controllable, the Q. may be factored into Q. =C. C. and the pairs 
I I I I 

(C.,A) are all completely observable. 
I 

It is well known that given a scalar criterion, say J(u, i,x ) , the 
0 

optimal control, the associated trajectory and the minimal value of the 

performance criterion are given in terms of the optimal gain matrix 

Ki (t) which is the solution of the Riccati matrix differential equation 

T K. +A K. + K.A - K.S.K. + Q. = 0, 
I I I I I I I 

s. 
I 

satisfying the terminal condition 

K. (T) 
I 

F. 
I 

The optimal control is 

-1 T 
R. B K. (t)x, 

I I 

the associated optimal trajectory is defined by 

X (A - S.K.)x , 
I I 

X 
0 

and the minimal value of the performance criterion is 

J(u0 , i ,x )-21 XT K. (t )x 
0 0 I 0 0 

(3) 

(4) 

(5) 

(6) 

(7) 
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2.2. Vector-valued I inear regulator problem 

Consider the vector valued optimization problem (1), (2). The prob-

lem may be viewed as an N player cooperative control problem in which 

the criterion J(u.i ,x )is associated with player i and the controls of 
0 

alI players have been aggregated into the control u since the players 

have agreed to play cooperatively. The Pareto optimal strategy (see notes 

by Leitmann) is the usnal solution concept in vector valued optimization 

problems and in cooperative control problems. A particular pareto optimal 

strategy is pursued in these notes and it is the minimax pareto optimal 

strategy, or equil izer strategy, and satisfies the condition 

max J(u*, i,x0 )< max J(u,i,x) 
i ES - i ES 0 

(8) 

for alI admissible u. 

To determine the solution u~' satisfying (8) let 

r . r 1 ~ 
J (u,lJ,X )= L lJ.J(u, 1 ,x )= L ll· [2 i 

m 0 i=] I 0 i= 1 I t 
0 

1 T T r 
= 2 j[x ( L lJ.Q.)x + 

t i =1 I I 

r 1 T r 
uT( L lJ.R.}u]Jt + 2 x(T) ( L lJ.F.)x(T) = 

i =1 I I i =1 I I 

where 

0 

1 T T 
= - J (x Qx 

2 t 
0 

T 1 T + u Ru)dt + 2 x(T) Fx(T) , (9) 
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Q = lJ. Q.' 
I I 

F 
r 

2 lJ. F. ' 
i=1 I I 

r 
R 2 lJ i R .• 

i =1 I 

Theorem 1. Let the modified max function F (u,x) be defined by m o 

F (u,x ) m o 

where 

r 

max 
]Jt:M 

M {]J: I lJ. 
i =1 I 

J (u,]J,x ) , 
m 1 o 

1, l-'. > 0 
I 

1, ... ,N} 

and let the max function F(u,x) be defined by 
0 

F(u,x) ~max J(u, i,x0 ) . 
0 it:S 

Then, for all bounded x and u {u(t) 
0 

F (u,x ) m o F(u,x ) . 
0 

td t , T]} , 
0 

61 

( 1 0) 

( 1 1 ) 

( 1 2) 

( 1 3) 

( 14) 

Proof. Let u be an arbitrary-bounded control and x0 an arbitrary-boun-

ded initial condition. The control and initial condition completely 

specify the trajectory of the system and, therefore, also 

J(u,i,x) for arbitrary i. Let ]J*t:M maximize (11) for given u and 
0 

x . Furthermore, Jet ~t:M be such that 
0 
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r 
l:0.J(u,i,x) 

i,:;1 I 0 

D. 
max J ( u, i , x 0 ) F ( u, x ) . 
iES 0 

( 1 5) 

From the optimality of )J'''t:M 

f r r /). 
F (u, X ) c. 

2: J (u, i ,x ) L ~.J(u,i,x) "' ~,·, > = F(u,x ) 
m o i=1 i 0 i"' 1 I 0 0 

( 16) 

Moreover, since F(u,x ) >J(u,i,x), it:S, it follows 
0 - 0 

r r 
F (u ,x ) 2: )J'~J(u,i,x ) > 2: ~,·, F(u,x0 ) F(u,x ) 
m o 0 - i 0 

i=1 i=1 
( 17) 

Theorem 2. J (u,~,x) possesses a saddle point, i.e., there exists a 
m o 

pair (u''',)J'") satisfying 

min max J (u,~,x ) 
m o 

max min J (u,~,x ) . 
m o 

( 18) 

u ~EM ~E:M u 

Proof: The control u is unconstrained, hence, its domain is closed and 

convex. By assumption J (x .~,u) is convex with respect to u, the 
m o 

set M is a closed, bounded and convex simplex in EN, and J (x .~,u) m o 

is 1 inear in ~. and therefore concave in~. Now the proof pro-

ceeds from Bensoussan~s Theorem I. 1. [9]. Contrary to his assumption 

( 1.2), J (x .~,u) is only concave (and not 
m o 

But then M is closed and bounded. Equating 

strictly concave) in ~· 

h2 
all the sets E2 of Benso-

ussan with M and following closely his derivation of Theorem 1.1 ., it 

follows that a saddle point exists. 

The saddle-point theorem is now invoked to interchange the order 
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of the min and max operations, as follows: 

min max J (u,u,x ) 
m o 

u usM 
max min 
usM u 

J (u,u,x ) m o 

where G(u,x0 ) is the min function defined by 

G(u,x0 ) r.!. T T T 1 T min 2 J (x Qx + u Ru)dt +2 x(T) Fx(T)]. 
u t 

0 

Corollar:t:: G(u,x0 ) is a strictly concave function over M. 

Proof: Let u1, u2 be arbitrary points of M. Let, moreover, 

=min J (u,u 1 ,x ) 
m o u 

( 19) 

(20) 

( 21 ) 

where the strict inequalities in (21) follow from the strict convexity 

G(Au1 + (1-A) u2,x0 ) =min Jm(u,Au 1+(1-A)u2,x0 ) 

u 

It follows from (22), and (21), for u u3, that 

(22) 

63 
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(23) 

and that, therefore, G(Jl,X ) is strictly concave for arbitrary x . 0 0 

Note that the minimization problem defined by (1) and (20) is comp-

letely equivalent to the linear regulator problem (1) - (7). 

Therefore, the minimizing control, as a function of Jl, is given by 

U''' 
-1 T -R B Kx, 

where K is the solution of the matrix Riccati equation 

K + AT K + KA - KSK + Q = 0, K(T) F ' 

with S BR-l BT. Substituting (24) into (1} results in 

X (A - SK)x , X ( t ) 
0 

X 
0 

and substituting it into (20) gives 

1 T G(Jl,X) =- x K(Jl,t )x , 
0 2 0 0 0 

(24) 

(25) 

(26) 

(27) 

The minimax value q(x ) and Jl* are determined by maximizing the min 0 

function~ 

G (j..t'~ X ) 
' 0 

max 
0sM 

1 T 1 T - x K(Jl t )x = - x K(Jl* t )x · 2 0 ' 0 0 2 0 ' 0 0 
(28) 
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Substituting~* into (24) produces the desired minimax strategy in 

feedback form. It should be noted that, in general,~* is a function of 

the state x0 , and therefore so is the matrix K(~*,t0). As a result, the 

minimax feedback strategy is a I inear function of the state and a non-

linear function of the initial state. The nature of the minimax solu-

tion will now be illustrated on a simple, but nontrivial example. 

2.3. Example 

Consider the second-order system characterized by 

A II : : II B II ~ II (29) 

with S {1,2}, where the two performance criteria are characterized 

by 

=II 

2 

: I 
Q1 R1 2, 

(30) 

=II_: 
-1 

Q2 
3 

R2 = 1, 

with F1 = F2 = 0 and an infinite optimization interval [0,~). It fol­

lows that 

r 
R I 

i=1 
~.R. 

I I 
2 - ~ 2 
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Q = 
r 
\ lJ.Q. 
L I I 

i -1 

= 112~11 + !12 Ill - !12 12 - !12 

~ - !12 Ill + 3!12 = 1 - 2!12 

- 2!1 
2 

+ 2!12 

with 0 ~!1 2 ~1 where Ill has been eliminated through Ill + !12 

ving the quadratic matrix equation 

T 
KA + A K - KSK + Q = 0 , 

gives for the elements of the gain matrix K: 

and the min function takes the form 

2 - ll 2 

J. MedaniC 

1. Sol-

(31) 

1 2 2 1 2 G(lJ 2,x1,x2) = 2 IS(x1 + x2) 1(2- !12) + 2x1 (2!12 - 1) + x1x2(2- !12) 

(32) 

Consider now maximization of the min function. The condition for the 

unconstrained maximum of the min function with respect to llz takes 

the form 

(33) 

2 If x1 - x1x2 < 0, there is no analytic maximum, aG/al12 < 0, and the 

constrained maximum is achieved for• !1 2 = 0. In the domain x~-x 1 x2 > 0, 

the condition for the maximum reduces to 
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1(2 - lJ~) = (34) 

Three different regions should be distinguished: Region I, where the 

unconstrained maximum satisfies w~ ~ 0, Region I I, where the unconst-

rained maximum satisfies w~ ~ 1, and Region I I I, where 0 < w~ < 1. Due 

to the constraint on w2, the contrained maximum in Region I is Wi = 0, 

and the minimax pareto optimal control is linear and coincides with 

the control optimal with respect to J(~,1,x) .In region I I, the cans­
o 

trained maximum is ll~ = 1 and the minimax pareto optimal control coin-

cides with the control optimal with respect to J(u,2,x )Jn Region 1 I I, 
0 

0 < w~ < 1, and the constrained maximum coincides with the unconstra-

ined maximum, and w2 is a nonlinear function of the initial state: 

(35) 

and the minimax pareto optimal control is not optimal with respect to 

either J(u,1 .x )or J(u Z,x )but with respect to a given linear combi-
o • 0 

nation of the two. To determine the boundaries of Region I note that 

w"' < o if 2-

2 ' 

from which we obtain the condition 

(36) 

(37) 
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\!here 

[2/2 .!. (3 + 4/JO) ]/15. 

Similarly, for Region II, note that 1/' > 1 if 
2 

from which we ohtain the condition 

where 

[2 ~ 1(4 15- 1)]/15. 

(38) 

(39) 

( 40) 

( 41 ) 

The results are displayed in Fig. 1. The state space is divided by 

solid lines into the three regions characterizing the minimax solu-

tion, while dotted lines delineate the regions in which J(u*,l,x) is 
0 

greater than J(u'~,2,x0 ) and vice versa. It may be observed that Re-

gion I I I, which distinguished the minimax solution, consists of those 

69 

initial states where the minimal values of the two performance criteria 

do not differ by an amount greater than a certain bound. 

2.4. Decomposition of the state space 

In general, and not only in this simple example, the maximization 
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of the min function induces a decomposition of the state space into 

subsets denoted by Ri, i = 1, •.• ,N and Ri1··is, s = 2, ... ,N. Jntrodu-

cing the definition of i-th vertex of M, such that 

]..li ={]..1. 
J 

]..1. 
I 

1, ]..1. = O,j ~ }J 
J 

then Ri are the closed subsets 

{x G(x ]..li)>G(x,]..I),]..IEM} o o' o 

and Ri1 .• is are the open subsets 

{x 
0 

G(x ,jl) > G(x ,]..1), 
0 0 ]..IEM ' 

E S 

jl. > 0, jl. > 0, 
11 IS 

(42) 

( 43) 

( 44) 

To determine the form of these subsets, let jl maximize for some x . Con­o 

sider now the state x = k x0 , where k is an arbitrary scalar. Substi­

tuting into the min function gives 

q (x) max G(]..l,x) 
]..I EM 

1 T 2 1 T 
max 2 x K(]J,t)x = k max 2 x K(]..l,t )x = 
]..IEM llEM o o o 

k2 .!_ xT K(O,t )x (45) 
2 0 0 0 

and jl maximizes for x as wei I. Therefore, if jl maximizes for x0 it 

maximizes for all states along the line joining x0 with the origin. 
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By extending this 1 ine of reasoning, it follows that the state space is 
. i . 

decomposed into subsets R1 , i = t, ... ,N and R 1" 1s, s = 2, ... ,N each 

of which is a union of symmetric cones with a common vertex at the 

origin of the state space . Moreover, each separate cone is con-

vex since its boundary is defined by a family of hyperplanes. To see this 

i i 
note that the condition for a minimum for x E R 1 ··· s reduces to 

0 

X 
0 

X 
0 

0 (46) 

0 

The solution of this system of equations produces 0. , ... ,0. which 
I 1 IS 

together with 0j = 0, j # i 1, ... , is gives 0. Consider now the inverse 

problem: For which x is ~maximizing? These initial states are given 
0 

precisely by the x0 that satisfy (46) for~= 0. Consequently, if a 
i . 

subregion R 1 · · 1s exists (it need not in a given problem), each equation 

in (46) produces two hyperplanes along which ~ maximizes. 

2.5. Computational Aspects 

Due to the linear form of the constraints defining M the gradient-

projection algorithm efficiently computes the Y* for a given x 0 . For 

some ~k components of the gradient are 
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1 T 
g.1 = 3G/a~.= -2 x raK(~,t )/a~.Jx , 

I 0 0 I 0 
1 , ••• , N , (47) 

and the projection of the gradient on the simplex M is obtained by pro­

jecting it first on the hyperplane I ~i = 1 with the result 
iE:S 

g 
\) 

(48) 

T 
where e0 = (1//r) \1,1, ... ,11. It is then checked whether, for any 

~j = 0, gVj < 0. If gVj is negative, the unit direction vector ej is 

appended to e0 and the projection matrix 

E 

T 
e. 

J 

(49) 

T 
is gradually formed where ek lo, ... ,l, ... ,OI, with the 1 at the kth 

position, whereby the final gradient projection is given by 

(50) 

The maximum is approached by the gradient algorithm 

]Jk+ 1 
(51) 

where the stepsize h may be varied, if necessary. 
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Straightforward computation of the gradient demands that, beside the 

matrix Riccati equation, a total of r matrix equations of order n x n 

obtained by partial differentition of the matrix Riccati equation, and 

of the form 

0' (52) 

1 , ••• , r , 

be solved. It is therefore a nontrivial simplification to show that it is 

possible to obtain each component of the free gradient by integrating 

only one scalar equation plus the state equation. Moreover, the free 

gradient components may in this way be obtained simultaneously, and it 

is therefore necessary to solve only n + r equations (plus the matrix-

Riccati equation). 

To determine these r auxiliary differential equations, premultiply 

(52) by xT and postmultiply by x, and integrate from t toT to obtain 
0 

T T · T T T J [x (3K/3]J.)x + x (3K/Cl]J.) (A-SK)x + x (A-SK) (ClK/Cl]J.)x 
I I I 

(53) 

In view of (26), it follows, after substitution into (53), that 

0' (54) 
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or 

T T 
J(d/dt) [x (aK/aJJ.}x]dt + 
t I 

T 
T 

((x Q.x + 
t I 

0. (55) 

0 0 

Taking into account the boundary condition of (52) and the definition 

(47), it follows 

g. 
I 

~G/au.= -21 K1 [:3K(c,t )/au.]x 
I 0 0 I 0 

1 T T 
= 2 f (x Q.x 

t I 
0 

or, finally, 

g. 
I 

J ( u''', i , x ) . 
0 

+ uTRiu)dt + ix(T) TFix(T)# 

(56) 

(57) 

Hence, all components of the gradient may be obtained simultaneously by 

integrating the state equation and a set of auxiliary equations, 

whereby 

g. 
I 

(A - SK)x , X ( t ) 
0 

X 
0 

1 1 T 
zYi(T) +2x(T) Fix(T). 

(58) 

(59) 

Note that the result expressed in (57) is identical to that 

which is obtained by partial differentiation of the modified criterion 

with respect to )Ji, assuming that the control u* is independent of )Ji. 
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But this was to be expected, since we recognize that (57) is a parti-

cular case of Pagurek·s result concerning the first-order variations of 

the performance criterion caused by variations in certain system para-

meters. Given a nominal ~k' the control u* given by (24) is optimal, 

therefore, by Pagurek [8], the first-order variation Jm(u*,~k,x0 ) is 

the same, whether the control is implemented in open-loop or closed-

loop form. 

2.6. Feedback corrections 

The~*= ~*(x ,t ) computed at t for x may need to be modified 
0 0 0 0 

in case perturbations alter the trajectory from the optimal path defi-

ned in the solution of (26). Adhering to the goal to minimize 

max J(x ,u,i) the corrections are made in accordance with the following 
iES 0 

development. Let the system at time tE[t ,T] be in the state x(t) and 
0 

let u+ be the control to be applied in the remaining time interval ft,T). 

Then the problem of minimizing max J(x ,u, i) at time t is equivalent to: 
iES 0 

q (x ) 
0 

min max J (x ,u,i) 
+ iES 0 

u 

1 t T T 
min max{-2 ( (x Q.x + u R.u)dt + J(x ,u+,i)} 
+ i ES t 1 1 0 

u 0 

min max {y. + J(x ,u+,i)} =min max { L ~.y.+ L ~.J(x,u+, i)} 
+ iES 1 0 + ~EM iES 1 1 iES 1 

u u 

=max min{ L ~.y. + L ~i J(x,u+, i)}=max{ L ~.y.+min J(x,u+.~)} 
~EM + i ES I I i ES ~EM i £5 I I + 

u u 
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where 

Y·= I 

t T .!.J (x Q.x + 
2t I 

0 

T uR.u)dt, 
I 

(60) 

(61) 

and represent the costs accumulated over the elapsed interval of play, 

I t 0 ,t), along the actual trajectory. If the system actually followed 

the optimal trajectory computed at time t 0 , the value of~ determined 

from (60) would be the same as that computed from (28). If not, correc­

tions may be warranted, depending whether ~*(x0)ERi or ~*(x0)ER;I ··is. 

In the second case p>'<(x,y) will in general differ from ~*(x0). In the 

first, it need not, depending on the extent of the difference between 

the actually accumulated costs yi and costs that would have been accumu-

lated up to time t along the optimal trajectory with no disturbances. 

The extent to which these differences can be tolerated without causing 

a change in the value of ]J'~ are defined by the modified boundaries of 

Ri which are obtained by maximizing (60) over M for all x(t). If the 

~tate x(t) at time t does not belong to the same region as did X at 
0 

time t o' a change of ~J ;': to a new value is necessary if the minimax 

pareto optimal so I ut ion over I t 0 • T] is to be achieved. That the boundaries 

will change is evident from l:e presence of the term I ~.y. which 
• . •I c- S I I 

• I I ~ 

excludes the possibility that R1 and R 1 ·· swill remain convex cones 

with a C·.1111mon vertex at the origin of the state space. The shape of 

these regions at arbitrary t wil I be considered in the following 

sections. 
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3. CONVEX APPROXIMATIONS 

3. 1. Motivation 

To enable thestudy of the complete fimily of Pareto optimal solu-

tions, and in particular to simp! ify the maximization of the min func-

tion necessary to determine to minimax Pareto optimal control, an ana-

lysis of the dependence of the solution K(]..l,t) on ]1 has been performed 

focused on the approximation of K(]..l,t) over M for all tE[t ,T]. The 
0 

goal is to make the dependence of K(JJ,t), and therefore of J(x ,u'~,IJ) 
. 0 

and u*(x,t) on ]1 explicit. The results allow a satisfactory convex 

approximation of K(]..l,t) to be performed, which is then used in the 

analysis of the feedback corrections in the vector-valued I inear regu-

lator problem, as well as in the study of the stochastic linear regula-

tor problem and of large scale systems. 

3.2. Taylor series approximations 

The first order Taylor series expansion K; (IJ,t) of K(]..l,t) about a 

v.ertex point ]..li, is defined by 

r 
K ( ]1 i , t) + I 0]1 . 

j=l J 

aK (]1 i, t) 
d].l. 

J 

(62) 



78 J. Medanic 

The zero-th order term is K(wi ,t) 

lution of (25) at the vertex wi. 

Ki (t) where Ki (t) is the so-

Introducing the notation Yij(t) uK(wi ,t)/aw. the equation for 
J 

Yij(t) is obtained by partial differentiation of (25) with respect to 

i 
JJ. at IJ , with the result 

J 

-1 -1 T 
K.BR. R.R. B K. + Q. 0 , 

I I J I I J 
(63) 

Decomposing Yij (t) into 

K.(t) +E .. (t) 
J I J 

(64) 

where K.(t) is the solution of (25) at the vertex 1), we have the 
J 

following proposition: 

~ropo~~ion 1_. The first order Taylor series expansion of K(w,t) at 

i 
theverteXIJ furall tdt0 ,T) isgivenby 

r 

~ 
j=1 

p.Yij (t) 
J 

r 
I w.[K.(t) +E .. (t)] 

j=1 J J IJ 
(65) 

where K.(t) is the solution of the Riccati equation at vertex ~j and 
J 

E .. (t) is the solution of 
I J 

-1 T T -1 T 
dE .. (t)/dt+(A-BR. B K.) E..(t)+E .. (t)(A-BR. B K.)+Q =0, E .. (T)=O (66) 

IJ I I IJ IJ I I ij IJ 
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while 

(67) 

i Proof. Note that at ll OJI.= ll· - 1 and 0\.1. = ll·• j f:. i. Since K.(t) 
I I J J J 

satisfies (26) and v1j(t) satisfies (63), then E •• (t) because of (64) 
IJ 

must satisfy (66). Moreover E .. (t) = 0 because Q .. = 0 and E .. (T) = 0. II II II 

Hence (62) becomes 

K~ (J.l, t) 
r 

K.(t) + t 0\l.[K.(t) + E •• (t)] 
I j=l J J IJ 

r 
K.(t) - K.(t) - E .. (t) + I \l.[K.(t) + E •• (t)] 

I I I I j=l J J I J 

r 

I 
j=l 

\l.[K.(t) +E .. (t)]. 
J J I J 

3.3. Convex Approximations of the Riccati Matrix 

i A first order Taylor series expansion at ll is a tangent hyperplane 

to K(\l,t) at \li. As an approximation it is good in the neighborhood of 

J.li, but deteriorates as \.1 recedes from lli. A way of improving the ap-

proximation is to consider higher order Taylor series expansions about 

a vertex point. However, this implies a preference to a certain vertex 

for which there is no reason. To approximate K(\l,t) evenly overMan 

approximation which approximates K(\l,t) by K~(J.l,t) in the neighborhood 

of vertex 11 1 and then gradually transforms into Ki(J.l,t) as 11 approaches 
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the neighborhood of ~j is constructed. 

Definition 1. The convex approximation of K(~,t) for all tE(t0 ,tf) is 

given by 

K (~. t) 
c (68) 

where K1 (p,t) is the convex combination of the zero-th order Taylor 

series expansions of K(~,t) at the vertices of M, 

i=1 

r 

L ~.K(~i.t) 
I 

(69) 

and K2 (~,t) is the convex combination of the first order Taylor series 

expansions of K(~,t) at the vertices of M, 

r 

L ~iK: (~.t) 
i=1 

and a is a scalar parameter, 0 ~a~ 1. 

(70) 

We' now show that K1 and K2 are lower and upper bound of K(~,t): 

Theorem 3. For each ~EM and all tE(t0 ,T) 

(71) 

Proof: Introducing the notation 
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J''' (xo, ]1) = T (72a) 1/2 x K(]l,t )x 
0 0 0 

G1 (x0 ,]J) 
T (72b) 1/2 x K1 (]J,t )x 
0 0 0 

G2(xo,]J) 
T (72c) 1 I 2 X K2 ( ]J 't ) X 
0 0 0 

G; (x0 ,]1) 
T . 

1/2xK;(]J,t)x (72d) 
0 0 0 

note that the (71) implies 

G1 (x ,]J) < J"'(x ,]J) < G2(x ,]J). 
0 - 0 - 0 

(73) 

Note now that J'"(x0 ,JJ) is a concave function of JJ in M for arbitrary 

x0 , because J(x0 ,u,]J) is convex in u for ]JSM and is concave in ]J~M for 

all u. Thus, after minimization of J(x0 ,u,]J) with respect to u, the 

resulting minimal value J*(x0 ,]1) is a concave function of ll in M for 

arbitrary x0 . Because it is concave, we have in particular 

(7 4) 

and because 

ll (75) 

we have from (69) and (72b) that G1 (x0 ,]J) < J'''(x0 ,]1). On the other 

81 
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hand, it follows from the results of section 2.5, and in particular 

i 
due to (56) that G1(x0 ,1J) is a first order Taylor series expansion of 

i i J·::(x 0 ,1J) at 11 and therefore the tangent hyperplane to J"'(x0 ,f1) at f1 • 

Then, because of the concavity of J:',(x ,IJ), it follows that 
0 

J.":(x ,f.d < G1i (x ,IJ). Summing over all iE:S gives 
0 - 0 

J:': (x 'f)) 
0 

r r . 
I IJ..J:':(x ,)J) < I p.G; (x ,f-1) 

i=l I 0 i=J I 0 

which completes the proof. 

For r.t = 0 convex approximation Kc(f.!,t) reduces to its lower bound 

K1(p,t) which is a linear approximation of K(f.!,t) over M and is the 

hyperplane joing the points of K(IJ,t) at the vertices of M. For a= 

convex approximation Kc(f.!,t) reduces to its upper bound K2 (f.!,t) which 

is a quadratic approximation of K(IJ,t) over )M. For a E(O, 1) the convex 

approximation Kc(IJ,t) is in between lower and upper bound of K(f.!,t). 

A reasonable choice for a is a= 0,5 since it represents a mean app-

roximation between the bounds and, in particular, for a second order 

algebric function the convex approximation (68) with a= 0,5 is exact: 

Definition 2. The second order convex approximation of K(f.!,t) for all 

tc(t ,T) is given by 
0 

(76) 

where K1(1J,t) is given by (69) and K2 (1J,t) is given by (70). The 
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0 1.0 

0 
K1 = K(O) + ~K(O)/a~ 

K~ = K ( 1) - ( 1-~) ClK ( 1) /Cl ~ 

K1 (1-~)K(O) + ~K(1) 

K2 = (1-~)K(O) + ~K(1) + ~(1-~) [ClK(O)/Cl~- K(l}/Cl~] 

K>'< = (1-~)KIO) + ~K(1) + 0.5~(1-~)[ClK(O)/Cl~- K(1)/d~] 

Figure 2. Lower bound K1, upper bound K2 and second order 

approximation K>'< of K(~). 

83 
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defined approximations for a scalar matrix K, computed for the time-

infinite control problem is illustrated in Fig. 2. 

Since K(f.Ji,t) = Ki(t) the lower bound K1(f.J,t) is 

r 
L fl· K. ( t) 

1=1 I I 
(77) 

and from Proposition 1 the upper bound K2 (f.J,t) is 

r r r 
K2 (p, t) L f.liK1(t) + L L f.l.f.I.E .. (t) 

i=1 i=1 j=1 I J IJ 
(78) 

Finally, the second order convex approximation (3.27) has the following 

from 

r r r 
L f.I.K.(t) + 1/2 L I f.l.f.I.E .. (t) . 

i=1 I I i=1 j=l I J I J 
(79) 

3.4. Example 

'1 0 0 

A = B = 
0 2 0 4 
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1' 

4 2 

2 

R2 = 2, F1 F2 = 0 and tE:[O,oo) . It follows that 

Ill + 4)J2 2)J2 

Q()J) R(JJ) = Ill + 2JJ2 

2)J2 4)Jl + JJ2 

and since Ill + JJ2 = 1. 

R = 2 - Ill , Q = 

where 0 ~ JJ 1 < 1. The Riccati solutions at vertex points are: 

K(O) = II 36.97 

12.48 

12.48 

12.24 
K ( 1) 

The I inear approximation of K()J1) is 

36.97 - 6.50JJ1 

12.48 - 4.611.11 

12.48 - 4.61)Jl 

12.24 - 5.37JJ1 

30.49 

7.87 

7.87 

6.87 
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IL 
I 

Kl ( IJ 1) K2 (ill) K•': ( ll ) 1 J2( 11 1) J2( 11 1) J'qlll) 

kll 36.966 36.966 36.966 
0.0 k12 12.484 12.484 12.484 37.088 37.088 37.088 

k22 12.242 12.242 12.242 

k11 36.386 36.318 36.365 
0.1 k12 12.053 12.023 12.044 36.106 36. 106 36.106 

k22 11.719 11.705 11.715 

kll 35.795 35.671 35.754 
0.2 k12 11 .617 11.561 11.599 35.111 35.112 35. 111 

k22 11.193 11.168 11.185 

kll 35.191 35.023 35. 133 
0.3 k12 11.176 11 .1 00 11 . 150 34.104 34.104 34.105 

k22 10.665 10.631 10.654 

kll 34.573 34.376 34.501 
0.4 k12 10.728 10.639 10.696 33.082 33.084 33.082 

k22 10. 135 10.094 10.120 

k11 33.940 33.728 33.859 
0.5 k12 10.274 10.178 10.287 32.045 32.046 32.045 

k22 9.601 9.558 9.584 

k11 33.291 33.081 33.206 
0.6 k12 9.812 9.717 9. 774 30.990 30.991 30.990 

k22 9.064 9.021 9.046 

kll 32.624 32.4 33 32.543 
0.7 k12 9.342 9.256 9.305 29.916 29.917 29.916 

k22 8.523 8.484 8.506 
-·----· 

k11 31 .936 31.786 31 .869 
0.8 k12 8.863 8.795 8.833 28.820 28.821 28.820 

k22 7.978 7.941 7.964 
-- -~-----

kll 31.225 31.138 31.185 
0.9 k12 6.373 8.334 8.355 27.700 27.700 27.700 

k22 7.428 7.410 7.410 

kll 30.487 30.487 30.487 
1 . 0 k12 7.872 7.872 7.872 26.552 26.552 26.552 

k22 6.873 6.873 6.873 

Table 1. Exact '<( 111 ), linear and second order approximations K1 {]J)and 
and K*( 111 ) and corresponding value functions, Example 1. 
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and the second order approximation is 

2 36.97 - 5.55~1 - 0.93~1 

2 12.48 - 4.21~ 1 - o.4o~ 1 

2 12.48 - 4.21~ 1 - o.4o~ 1 

2 12.24- 5.10~1 - 0.18~1 

Exact solution K(~ 1 ), 1 inear and second order approximate solutions and 

corresponding value functions for the initial condition xT = [1 1] are 
0 

given in Table 1 for different ~ 1 s[O, 1]. Comparing element by element 

of Riccati solutions we can see that for 1 inear approximation error is 

always less than 1% and that for second order approximation is less 

than 0.4%. 

3.5. Application of Convex approximations to vector valued 

linear regulator Problem 

87 

A direct application of convex approximations in the vector valued 1 inear 

regulator problem is in the approximate maximization of the min function 

(80) 

in the open loop case as well as in the maximization of the more gene-

ral form of the min function 

G(~,x,y) (81) 
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in the feedback case, when accumulated costs on the elased interval of 

play have to be taken into account. 

Using the convex approximation for K(~,t), and dropping the index t 

for notational convenience, 'the following approximate expression for 

G(~,x) is obtained for the open-loop solution 

G (IJ ,x) TxT{ ~ ~.K. + T I I ~.~.E .. }x 
icS 1 1 icS jcS 1 J IJ 

1 T 1 T 
2 I~- x K.x + ~ ~ I~.~. x E .. x 

icS 1 1 icS jcS 1 J IJ 

Introducing the vector v and the matrix M with elements 
0 

T 
K. v. X X 

I 2 I 

(M ) .. 1 T 
E .. 2 X X 

0 IJ IJ 

cquat ion (82) reduces to 

G ( 11, x) 
T 1 T 

11 v + 2 11 M0~ 

to be maximized under the constraints 

T 
li e.= 

p. > 0 
I 

(82) 

(83) 

(84) 

(8Sa) 

(8Sb) 
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where e is a vector with unit components. Note that (84), (85) define a 

quadratic programming problem which can be solved analytically or nume-

rically by quadratic programming algorithms. 

Considering now the situation the feedback case, and the min 

function (81) it is easily seen that there is a complete analogy except 

that v + y is substituted instead of v into (84). However, the final 

results are considerably affected by the appearence of the vector y 

since its components are independent of the state x. The boundaries 

of Ri, i = 1, .•. ,rare no longer defined by intersections of hyper­

planes; instead, they become hyper-hyperboloidal surfaces in En. This 

point will be illustrated on an example in the next section dealing with 

the stochastic version of the problem where the same phenomenon is 

exhibited. 

4. STOCHASTIC LINEAR REGULATOR WITH A VECTOR CRITERION 

4.1. Statement of the problem and method of solution 

Consider now the stochastic linear regulator with a vector valued 

criterion. Both the open-loop solution and the feedback solution· shall 

be obtained and compared with each other as well as with the determi-

nistic solution. The nature of the stochastic solutions and their re-

Jationships to the deterministic solution wil I be discribed, and il Ius-

trated through the analysis of second order systems with two perfor-

mance criteria by utilizing the convex approximation of the solution 

of the Riccati matrix differential equation. 
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Let {~, ~· P} be a probability space, w a member of the sample space 

s-1, and It ,T] a closed time interval. Let 
0 

dx A(d)xdt + B(t)udt + C(t)dw(t), x(t0 ) X 
0 

be a 1 inear stochastic differential equation, and 

1 T T T 
E {2- I (x Q.x+u R.u)dt 

t I I 

1 T + -2 X (T) H. X (T) I X ( t ) 
I 0 

0 

(86) 

(87) 

i = 1,2, ... ,N a collection of performance criteria, where E is the ope-

rator of mathematical expectation; A, B and C are bounded (in Euclidean 

norm) and Lebesgue measurable matrices on [t ,T]; u(t) = u(t,w) is a 
0 

random m vector such that u(t, ·) is measurable with respect to cr-alge-

bra t of w sets generated by the family of random vectors {w(t•) -

w(t") : t < t• < t" < d, where w(t) is the Wiener process in Es, and o- -

E is the real 1 ine. It is also assumed that 

T 
I 11 u < t , w) 11 2 d t 

T T f E{u (t,w)u(t,w)}dt < oo • (88) 
to to 

In addition, Q.(t) and R. (t) are now measurable, locally bounded, sym-
' I 

metric matrices. In the stochastic 1 inear regulator problem with vector 

valued criterion the problem is to determine a pair (u*,i*) such 

that 

J(x u* i1<) 
0' ' 

min max J(x0 ,u,i) 
UE:U iE:S 
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Applying the methodology developed for the deterministic problem made 

possible by the fact that analogs of Theorems 1 and 2 apply in the 

stochastic problem, the solution is determined by the following develop-

ment: 

q (x ) 
0 

min max J(x0 ,u,i) 
U€U i €5 

max min J (x ,u,1..i) 
]J€M uEU m 0 

where now 

G(x ,1J) 
0 

min 
U€U 

N 

I 
i=l 

1 T 
1J.Ez-f 

I t 
0 

min max 
U€U ]JE;M 

J (X , U, ]..i) m o 

max 
1JE:M 

G(x ,1J) 
0 

min 
U€U 

E ~ f 
2 t 

0 

(/Qx + uTRu)dt + x(T)TH.x(T)ix(t) 
I 0 

(89) 

(90) 

and Q, Rand Hare again given by (10). From the properties of Q., R. 
I I 

X 
0 

and H., and the definition of M, it follows that R is positive definite, 
I 

and Q and Hare at least positive semidefinite. 

4.2. Solution of the stochastic problem 

Determination of an analytic expression for G(x ,]..1) is equivalent 
0 

to solving the familiar stochastic linear regulato'r problem [10,11]. 
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We wil 1 destinguish the open-loop and feedback solutions and derive them 

separately. 

(a) Open-lor.p (OL) control u'''(t) minimizing J (x ,u,]J) for a given )JE:M m o 

is given by 

u'''(t,IJ) 
-1 T 

-R B K <P ( t, t ) x 
0 0 

(91 ) 

where K is the solution of (25) and <P(t,t 0 ) is the fundamental 

matrix of the system 

z = (I\ - BR -I B T K) z, z ( t ) 
0 

The corresponding minimum loss is 

G (x , 11) 
0 

I I T 
- q(t ) +- x K(t )x 
2 0 2 0 0 0 

q 
T 

- t r ( C NC) , q (T) 

and N is the solution of 

T N + A N + NA + Q 0' N(T) 

0 

0 0 

X 
0 

(92) 

(93) 

(94) 

(9 5) 
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(b) Feedback (FB) control u* for a given ~EM has the form 

and the minimum loss over [t0 ,T] is given by 

G(x0 ,~) 1 (t ) + -21 xT K(t )x =2p 0 0 0 0 
(97) 

"' K is again defined by (25) (where "' denotes a quantity pertaining to 

the FB case only), in which {K,Q,R,H} is replaced by {K,Q,R,H}, with 

r r 
R I 

i=1 
0.R., 

I I 
H I 

i=1 
0.H. 

I I 
(98) 

and p(t) is the solution of 

• TA 
p = - t r ( C KC ) , p ( t) 0. (99) 

In the feedback solution information on the system state gained during 

play wil I be uti I ized and it wil I therefore be to advantage to note 

that the minimum loss from some intermediate instant of time t to the 

terminal timeT is given by (97) with (t,~) replacing (t0 ,x0 ). 

A minimizing control in the OL (FB) case depends on ~(0), and 

the minimax control is finally determined after maximization of 

G(x0 ,lJ.) (G(x0 ,0). In the OL problem ~1<£M is determined form 
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q (x ) 
0 

G(x "''') o''"' 
1 1 T 

max I q(t 0 ) +I x K(t )x 
.,.V o o o 

ll"-

( 1 00) 

and the minimax control is given by 

u''' ( t) ( 1 01 ) 

In the feedback solution one must take into account that due to ran-

dom disturbance inputs, the trajectory of the system wil 1 be stocha-

stic and continuous adjustment of l.l'~ from the initial value 

d (x ) 
0 

max i p(t ) + txT K(t )x 
t.~e:V o o o o 

(102) 

may be warranted. Consider therefore an intermediate instant of time 

tc t 0 ,T . Due to the control employed in the elapsed interval t 0 ,t 

and due to noise, the system has been brought to some state ~(t) on the 

random trajectory along which definite costs have been accumulated for 

each particular criterion in the set S. Denoting these costs by 

Y. 
I 

1 t 
- r 2 . 

t 
0 

~ T AT A 
(x Q.x + u R.u)dt 

I I 
(I 03) 

A+ 
and denoting by u the control to be used in the remaining interval of 

play and by U+ the set of admissible controls over that interval, it 

follows that Gt, = w'''(~,t) is determined from the following 
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determined from the following developement: 

a (xo) = ~in max J(x .~,i) 
ue:U ie:S 0 

min [y i + J(~,u + 
' i) ] max 

ue:U ie:S 

N N 

[ I ~.y. L A A A+ min max + ~.J(x,u ,i)] 
ue:U ~e:M i=1 I I i=1 I 

N N 

I 
A 

I A. " """'+ max ~in+ ~iyi + ~.J(x,u ,i)] 
~e:M u e:U i=1 i=1 I 

N N 
max I ~iyi + min+ I 0.J(x,u,i)J 
~e:M i=1 u+e:u i=1 

I 

N 
max[( I 

A 
+ G(x,0}] ~iyi 

~e:M i=1 

N 
max[( I 

A 
+ p(t)+ t ~TK(t)~)J JJiYi 

~e:M i=1 
( 104) 

The feedback form of the minimax control then takes the form 

A A-1 A T R A A 
u* -R (~*)B (~*,t)x ( 1 OS) 

with ~* = 0*(~,y,t) as determined from (104). 

4.4. Stochastic Versus Deterministic Problem and an Approximate Solution 

In ana 1 ys i ng dependence of JJ'~ on x0 in the open-1 oop so 1 uti 011 and its 

dependence on x andy in the feedback solution it is convenient to 
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draw a parallel with the deterministic problem. 

Comparing (28) which defines il'qx ) in the deterministic problem 
0 

with its strochastic counterparts 

is seen that~ q(t0 ), ~ p(t0 ) and 

given by (93), (97) and (102), it 
1 r A 

2 I il·Y·• respectively are the terms 
i=1 I I 

distinguishing the stochastic from the deterministic problem when C + 0, 

then q(t0 ) and p(t), tE[t0 ,T)]tend to zero and stochastic solutions in 

the 1 imit reduce to the deterministic solution. The same is approxima-

tely true when the terms due to noise are negligibly small with respect 

to the quadratic term~ x~ K(t0 )x0 in the OL case, or the deterministic 
1 r A 1 AT A 

term 2 I ll·Y· + 2 x K(t)x in the FB case. Hence, for largellxoll the 
i=1 I I 

stochastic solution approaches the deterministic solution. On the other 

1 T 
hand, when the quadratic term 2 x0 K(t0 ) x0 is much smaller then the 

other term, as when II x0 11 is small, or in the case of excessive noise, 

then the maximizing values of u*(x ) (u*(x )) depend solely on the 
0 0 

characteristics of noise, and not on the initial state of the system. 

The most interesting case occurs when both terms of G(x ,iJ) (simi­o 

lar results apply for the FB case as well) have balancing infulence on 

the value of ll*(x ) . Analysis of this case in difficult because of the 
0 

involved dependence of K on il, and because the pres$nce of the noise 

1 term 2 q(t 0 ) destroys the cheracteristic properties of the deterministic 

solution. To derive the basic characteristics of the stochastic solutions 

_::ld to analyse the effects of noise on the dependence of il* on x0 , we 

uti I ize the convex approximation (79). 

In should be noted that E .• (t) are positive semidefinite for 
IJ 

tE[t ,TI, a property to be employed in the sequel. This follows from 
0 
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the stability of the matrices A- S. K., and the positive semidefini-
1 I 

teness of Q ••• 
I J 

To apply these results note that treating (95) as a special case 

of (25) we have that N(t) may be written exectly as 

N(t) = I 
i=1 

l.l.N.(t) 
I I 

(1 06) 

97 

where N.(t) is the solution of (95) with the ordered pair {Q,H} replaced 
I 

by {Q.,H.}. 
I I 

Then, with 

L. (T) = 0 
I 

we have the following approximate expression for (93): 

1 N,..,.. TN 
G*(x0 ,~) = 2 [I ll.L.(t) + x (I l.l.K.(T) + 

i=1 I I 0 0 i=1 I I 0 

N N 
+ _21 I I ]J.]J.E .. (t ))x ] 

i =1 j=1 I J I J 0 0 

(107) 

( 1 08) 

Similarly, in the feedback case instead of (97) the following appro-

ximate expression is obtained: 

N 
+.!. 

N N 
G*(x0 ,D} 1 "' "' I I "' "' M .. ( t ) = 2 r I l.l.L.(t > l.liJJj + 

i=1 I I 0 2 i=1 j=1 IJ 0 

T N 
+.!. 

N N 

I I "' "' E .. (t ))x], +x ( I ~ . K . { t ) ]J. ]J. ( 1 09) 
0 i=l I I 0 2 i=1 j=l I J IJ 0 0 
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and instead of (104) the approximate expressicn 

A A IN"' N,.,,., INN,.,,., 
G*(x0 ,v) = -2[ I ~.y. + I ~.L.(t) + -2 I I ~.~J. M .. (t) + 

i=l I I i=l I I i=l j=l IJ 

"'T N A I N N 
+X (I ~.K.(t) + 2 I I C.D.E .. (t))~J. 

i=1 I I i=l j=l I J IJ 

where now 

L. 
I 

M .. 
IJ 

T tr(C K.C) , 
I 

T 
tr(C E. .c) 

I J 

L.(T) =0, 
I 

M •• (T) = 0. 
I J 

4.4. Analysis of Second Order Systems with two Criteria 

]. Medanic 

( 11 0) 

( 111 ) 

( 112) 

The maximizing ~* in both the OL and FB cases can be determined by 

solving a family of quadratic programming problems. However, at this 

point it is of interest to point out some general properties of the 

solutions. To this end we make a rather complete study of second order 

problems involving two criteria (r = 2, n = 2). 

Consider first the OL solution. Now (108) takes the simple form 

G (x , ~) 
0 

( 113) 
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where Li = Li(t0 ), i = 1,2 are given by (107), and E = E12 + E21 . The 

problem of determining maximum of G(x0 ,~) subject to the constraint 

0 ~ ~ 1~ 1, is in view of the concavity of G(x0 ,~), reduced to the pro­

blem of analysing the free extremum ~f given by 

( 114) 

99 

and deducing from it the constrained extremum~*· Consequently, the 

subregions R1 and R2 of initial conditions for which ~f1 > 1 (~*1 = 1) and 
0 0 -

~~ ~ O(~f = 0), respectively, are from (114) defined by: 

1 R = {x 
0 0 

where 

T 
d - tr J CT(N 1 - N2)Cdt . 

to 

Right hand sides of the inequalities defining R1 and R2 do not 
0 0 

( 115) 

( 116) 

depend on x0 , and, moreover, with C = 0 the right hand sides reduce 
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1 2 1 2 
to zero and R and R reduce to R and R and the problem to the deter-o 0 

minastic one. In order to facilitate the comparison of the stochastic 

with the deterministic solution recall the results of Example 1 in 

Section 2.3. 

On the deterministic level there exist two possible and qualita-

f f ( .1) 12 1 R2 l tively di erent cases: regions R , R and al exist, ( i i) sta-

1 2 
te space coincides with either R orR (Case (i i) occurs if one cri-

terion dominates the other for all x0 so that the minimax control is 

that which minimizes the dominating criterion). In analysing the problem 

on the stochastic level we restrict the analysis to the stochastic coun-

terpart of case (i) since the nontrivial results pertinert to the sto-

chastic counterpart of case (ii) are contained in it. 

Consider therefore stochastic counterpart of case (i). The existe­

nce of both subregions R1 and R2 implies that the subsets 

R1 {x T > 0 } xo p1 X 
0 o-

( 117) 

R2 {x T < 0 } xo p2 X 
0 o-

are not emply, and concequently, since both R1 and R2 are cones with 

a common vertex at the origin of the state space, that both P1 and 

P2 are non-semidefinite matrices. It therefore follows that in the 

stochastic case the boundaries of R! and R! are defined by hyperbolic 

hypersurfaces described by the equalities (115). 

Two distinct subcases may be distinguished. In subcase (a) assume 

that d > 0. It follows from (115) - (117) that in relation to R1 and R2 , 
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the subregions R! and R! have th{' following properties: 

1 2 (5) Boundaries of R and R are the asympthotes of the boundaries of 

R1 and R2 respectively. o o' 

It is now simple, at least qualitatively to draw a portrait 

of the state space. The results are given ing Fig. 3. with the 

dashed 1 ine representing the partition of the state space form 

Fig. 1 for the corresponding deterministic problem. 

X,o 

Fig. 3. 
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In subcase (b) assume that d < 0. It then follows analogously that 

R1 and R2 now have the properties: 
0 0 

{2) 0 t R~, 

(5) 
1 2 

Boundaries of R and R are the asympthotes of the boundaries of 

R1 and R2 , respectively. A qualitative illustration of this case 
0 0 

is presented in Fig. 4. 

Fig. 4. 
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We now turn our attention to the FB solution. Consider first the situ-

ation at time t = t 0 . The min function is given by (109) and the free 

extremumwith respect to ~ 1 is now given by 

so that in this case R~(t0) and R~(t0) are given by: 

{x 
0 

{x 
0 

T 
X 0 P1 X > d1 ( t ) } , 

0- ' 0 

where, in view of (4.39) and (4.40), we have 

T 
d 1 ( t) - tr I c T p1 Cdt 

t 
0 

T 
dz(to) - tr I CTP2 Cdt 

t 
0 

( 118) 

( 119) 

( 120) 

Note that, in view of (116) and the positive semidefiniteness of E: if 

d1 < 0 then d2 < d1 < 0, if d2 > 0 then d1 > d2 > 0, so that three 

cases may be distinguished: (a) d1 > 0 and d2 > 0, (b) d1 < 0 and 

d2 < 0, (c) d1 > 0 and d2 < 0, while the case d1 < 0 and d2 > 0 is 

not possible. 
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Note that cases (a) and (b) are qualitatively equivalent to the 

cases (a) and (b) in 

1 

the open-loop solution. Case (c) is nova] and in 

R;(t 0 ) are found to possess the following properties: this case Rf ( t 0 ) and 

(2) 0 t 

(5) 1 2 
Boundaries of R and R are the asympthotes of the boundaries of 

1 2 
Rf(t 0 ) and Rf(t 0 ), respectively. 

Qualitative illustration of this case is presented in Fig. 5. 

Finally, consider the feedback case at some arbitrary time t£[t ,T]. 
0 

In this case G(x0 ,0) is given by (104) so that after analogues develop-

! 2 
ment we now have that Rf(t) and Rf(t) are given by 

{~ 

( 121) 

{~ 

As (121) shows, for arbitrary t£[t 0 ,T] the qualitative aspects of 

the solution remain the same as for t . It should also be noted that, 
0 

in the feedback case the effect of noise and the effect of the accumu-

lated costs in the elapsed interval of play may superimpose, or coun-

teract. In the latter situation we may have, in a given problem, that 

case (a) transforms into case (b), or (c), or vice versa, depending on 

the particular realization of the trajectory in the elassed interval of 

play. 
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Fig. 5. 

Finally, let us note that in a given problem the complete decomposi­

tion of the state space could be carried out in advance if the noise im­

puts are identified (matrix C given) and if the noise characteristics 

are assumed known. Then given the current state x and the accumulated 

costs y one may determine the optimal v* from this decomposition and 

apply the minimax control (105). 

The above results extend directly to higher dimensional problems 

with two criteria. In a qualitative sense the results can also be 

extended to multicriteria problems since the basic properties of the 

deterministic soiution which is an asymptotic solution of the stocha" 

stic problem carry over to the mjlticriteria case, but the cases are 
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to numerous to cathegorize in general. However, specific problems can 

be tackled with straightforward extention ot the reasoning described 

above. Moreover, basic features of the solution may be determined by 

solving a quadratic programming problem as indicated earlier. 

5. APPLICATION TO LARGE SCALE LINEAR SYSTEMS 

5. 1. Multiple Plant Problem 

Consider now that the 1 inear time-invariant system represents N 

n-dimensional plants controlled by the same m-dimensional control u, that 

is, I et in 

dx(t)/dt = Ax(t) + Bu(t), x(t0 ) (122) 

x be the r-dimensional state vector, and A and B be matrices of dimen­

sion rxr and rxm. Furthermore, let the matrices A and B have the follo­

wing partitioned form: 

Al 0 

A2 
81 

A B ~2 (123) 

0 AN BN 
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For simplicity, the matrices A., i = 1, ... ,r are assumed to be all of 
I 

107 

order nxn so that r = nxN. This assumption simp! ifies notation without 

loss of generality. 

Thus there are N subsystems Si each characterized by the substate 
i vector x such that 

dxi(t)/dt =A.xi (t) + B.u(t), 
I I 

( 124) 

1 , ••• , r 

and 

T 
X ( t) 

Let the performance criterion of the subsystem Si be of the 

form 

+~J 
2 t 

0 

T u(t) R.u(t)}dt 
I 

( 1 25) 

where the matrices Q., R. and F. are of proper dimensions, Q. and F. I I I I I 

being nonnegative definite, and R. being positive definite. 
I 

If a subsystem Si were control led separately from other subsystems 

it would be possible to fulfill its objective by selecting the optimal 

i control as a I inear function of its state x 

i 1 T · u (t) =-R: B. K.(t) x 1 (t) 
I I I ( 126) 
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where K.(t) is the solution of the matrix Riccati differential equation 

I 

T -1 T 
dK. (t/dt + A.K. (t} + K. (t}A. - K. (t} B.R. B.K. (t} + Q. 

I I I I I I I I I I I 
0 ( 127} 

satisfying the terminal condition 

K. (tf} = F. 
I I 

However, the control ui(t} would affect other subsystems and may 

not be satisfactory with respect to their optimality criteria. One way 

to resolve this difficulty is to consider the problem as one of coope­

rative control and to combine the criteria Ji(x~,u}, i = 1 , ... ,N into a 

supercriterion J(x0 ,u,~} formed by introducing a vector of weighting 

factors ~., i = 1, ... , r such that 
I 

where 

p1Q1 0 

Q(J.l) ~2Q2 ' F(J.l) 

0 11 rQr 

and 

N 
l: J.l. = 1 ' J.li ~ 0, 1, ... ,N. 

i=l I 

t 
1 f T 

+ 2 J {x(t} Q(~)x(t) + 
t 

0 

( 128} 

~1 F1 0 

J.l2F2 
N 

,R(1!)= L ].l.R. 
i=1 I I 

0 11/r 
(129 ) 
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The problem thus becomes a Pareto-optimal, or cooperative, control 

problem of generalized control theory [24].Problems of this kind are 

solved by d~ining a set of non-inferior controls which is obtained by 

minimizing J(x0 ,u,~} with respect to u for all ~EM. As in the vector 

valued linear regulator problem non-inferior controls will have the 

general form (24} where K(~,t} is the solution of the matrix Riccati 

differential equation (25}, where Q(~}, R(~} and F(~) are now given by 

( 129) . 

Let K(~,t) be partitioned into 

( 130) 
K(~,t) = 

where K~. = K!. and K .. are matrices of order nxn for all i and j. The 
IJ IJ IJ 

dependence of K .. on~ and t has been omitted in order to simplify the 
IJ 

notation. In view of (123) and (129), the matrix Riccati differential 

equation in block partitioned form becomes 

T N N -1 T · • • 
dK .. /dt + A.K .. + K .. A.- I I K.kBkR (~)Bn K0 .+ ~.Q.5(1-j)=O ( 13ij 

I J I I J I J J k= J !/_= J I IV IV J I I 

with the terminal condition 

~.F.5(i-j) 
I I 

(132 ) 

where 5(i-j) is the Kronecker delta symbol. 
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5.2. Taylor series Approximations 

Proposition 2. The zero-th order term K( i ,t) of a first order 

Taylor series (62) is given by 

0 0 0 

0 0 0 

K(IJ i ' t) K .. 
II 

( 133) 

0 0 ..... . 0 

where K .. {t) is the solution of (127). 
I I 

Prooof. The matrix Riccati differential equation (25) satisfies the 

necessary and sufficient conditions for the existence and uniqueness of 

the solution for all tE(t ,T) [4]. It can be easily seen that K .. = 0 
0 IJ 

is the solution of (131) for i f. j and that (131) reduces to (127) for 

i = j. Therefore K(lli ,t) as given by (133) is the unique solution of 

(25), which completes the proof. 

The equation for Yij(t) = aK(Ili ,t)/all is obtained by partial dif­
J 

ferentiation of (25) with respect to IJ. 
J 

i -1 -1 T i i 
+ K(ll ,t)BR. R.R. B K(ll ,t) + aQ(IJ )/alJ. 

I J I J 
0, 
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0 0 

0 0 

Q. 
J 

F. 
J 

0 0 
0 0 

( 135) 

Let Yij(t) be partitioned into block matrices of order nxn in the 

following way 

(136 ) 

yij yij yij 
Nl N2 NN 

Then in view of (132) and (133) the matrix I inear differential equation 

(134) in partitioned form becomes 

- ~ KkiB.R-.lBTYij~(k-"1) K B R-lR R-lBTK ~(k ·)~(n •) L £ u + k. . . . . . . R, u - I u )(,- I + 
p=1 I I p p I I I J I I I 

( 137) 
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with the terminal condition 

where k 

y i j (T) 
kR. 

1, ... , N and t 1, ..• , N. 

Proposition 3. For all k and R. which satisfy k;. i,j ori'i: i,j 

for all tc(t ,T). 
0 

0 

J. Medanic 

(138) 

( 139) 

Proof. The I inear matrix differential equation ( 13~ satisfies the ne-

cessary and sufficient conditions for the existence and uniqueness of 

the solution for all t£(t 0 ,T). Because the first r equations in (137) 

form a closed system of equations, and because v!{(t) = 0, t = 1, ... ,N 

satisfies these N equations it is the unique solution of these equations. 

The same is true for all v~{. k = 1, ... ,N, k F i,j, which completes the 

proof. 

The solution of (137) thus reduces only to the case when both k 

and R.are equal to i or j. Two cases should be distinguished, first, 

when j 'i: i, and second, when j = i. For j F i (137) reduces to the 

following four 1 inear matrix differential equations: 
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ij ( -1 T )T ij ij -1 T ) ij -1 T dY .. /dt + A.-B.R. B.K .. Y .. + Y .. (A.-B.R. B.K .. - Y .. B.R. B.K .. 
II I II Ill II II I II Ill IJJI Ill 

-1 T ij -1 T ij K .. B.R. B.Y .• + K .. B.R. B.K .. = 0, Y.11.(tf) = 0 
II I I J Jl II I I I II 

( 140a) 

ij/ ( -1 T )T ij ij -1 T ij dY .. dt + A.1 -B.R. B.K.. Y .. + Y .. A.- K .. B.R. B.Y.. 0, 
IJ I I I II IJ IJ J II I I J JJ 

y~~(tf) = 0 (140b) 
IJ 

lj/ Tij ij( -1T) ij -1T dY .. dt + A.Y .. + Y .. A.-B.R. B.K .. - Y .. B.R. B.K .. = 0, 
J I J J I J I I I I I I I JJ J I I I I 

ij( ) - 0 y .. tf -
Jl 

( 140c) 
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ij T i j ij dY . ./dt + A.Y .. + Y .. A. + Q. = 0, 
JJ J JJ JJ J J 

Y~~(tf) =F. 
J J J 

( 140d) 

For j i, we must also have k = fl- = and (137) reduces to 

dy .i .i /d t + ( -1 T ) T i i i i ( -1 T ) -1 T A.-B 1R. B.K.. Y .. + Y .. A.-B.R. B.K .. + K .. B.R. B.K .. II I I Ill II II I II Ill 1111 Ill 

i i ) y •• ( tf 
II 

F. 
I 

(141 ) 

Note that (141) is not a particular case of any of the four equa-

tions (140) for j = i. The solution of (141) is related to the solutions 
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of (140) in the following way 

y ~ ~ 
II 

(yoiJ0° + v001jo + yij ij) I 0 0 + y 0 0 0 0 
II IJ Jl JJ J=l 

( 142) 

In can be easily shown that performing the necessary index substitution 

in (142) and adding the four matrix differential equations we obtain 

the differential equation ( 141) 0 

Proeos it ion 40 The first order Taylor series expansion of K(]..l, t) 

the vertex ll 
i and for all tdt0 , T) is given by at 

N 

I (143) 
j=1 

where Yij(t) in partitioned form is given by (136) and (137) and all 

block matrices in (136) are equal to zero except those given as the 

solution of (140) for j -F i and (141) for j = i. 

Proof: Note that at the vertex i o]..li = ]..li-1 and o].lj = ]..lj' j f. i. 

Since the only nonzero submatrix K .. (t) of K(]..li ,t) satisfies (127) and II 

the only nonzero submatrix Y~~ (t) II 

easily shown that Y~~(t) = K .. (t) II II 

(124) becomes 

N •• 
+ L ]..l.YIJ(t) 

j=l J 

of Yii(t) satisfies (141), it can be 

and therefore Vii (t) = K(]..li ,t). Hence 

( 144) 
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5.3. Convex Approximations 

Definition 1. The convex approximation of K(~,t) for all te(t0 ,T) 

is given by 

where 

N 
I~· K(~i ,t) 

i=l I 

(145) 

(146) 

is the convex combination of the zero-th order Taylor series expan-

sions of K(~,t) at the vertices of M, 

N 

I ~iK~(~,t) 
i=l 

( 14 7) 

is the convex combination of the first order Taylor series expansions 

(62) of K(~,t) at the vertices of M, and is a scalar parameter. 

Theorem 1. For each ~eM and all te(t0 ,tf) 

( 148) 

Definition 2. The second order approximation of K(~,t) for alI t (t 0 ,tf) 

is given by 
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(149) 

In: the multiple plant problem K(~i ,t) is given by ( 133) where 

Kii(t) is the sa,lution of (127) and therefore the lower dound i-s 

0 

0 

Based on Proposition 4 the upper bound K2 (~,t) is 

N N 
I I~· ~.vij(t) 

i=1 j=1 I J 
( 151) 

where Vij(t) in partitioned form (136) is the solution of (140) for 

i # j and (141) for i = j. Finally, the second order approximation 

(149) is given by 

N 1 N N •• 
K*(~,t) = ~ I ~iKi (t) + ~ I I ~i ~J. v'J(c) 

i=1 i=1 j=1 
(152) 
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5.4. Multiple Plant Problem Exanple 

B =I 1 
1 -1 

2 

2 3 

2 

3 

0 
0 

0 

-1 -1 4 2 

3 -5 3 2 2 

0 

R = F = 0 2 
0 2 

and tE:[O, ) . It follows that 

2 0 0 1 

A 
-1 3 0 0 

B 
-1 2 

0 0 -1 -1 4 1 

0 0 3 -5 3 2 

2111 

Q 
111 3111 0 
0 0 4(1-111) 2 (1-111) R 

0 0 2 ( 1 -111 ) 2(1-111) 0 
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where 0 ~ ~ 1 ~ 1. The pair [A,B] is controllable and the pair [C( 1) ,A] 

is: for ~ 1 = 0 not detectable, for ~ 1 (0, 1) observable and for )l1 = 1 

detectable. Eigenvalues of A are: A1 = 2 + j, A2 = 2 - j, A3 =- 2, 

A4 = -4, and for ~ 1 = 0 we have two nonnegative definite solutions of 

algebraic Riccati equation. One is optimal 

K (0) 
0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0.40 0.08 

o. o8 o. 12 

but leaves eigenvalues A1 = 2 + j and Az = 2-j unchanged. Thus the 

-1 T 
closed loop system A - BR B K (0) is unstable. The other, 

0 

4.45 -0. 17 -1 . 1 3 0.02 

Ks {O) 
-0. 17 1. 23 0.09 -0.02 

-1 . 13 0.09 0.69 0.08 

0.02 -0.02 0.08 0. 12 

stabilizes the closed loop system A - BR- 1 BTK (0), and wil 1 be used 
s 

to form the 1 inear and the second order approximation of K()l 1). At the 

other vertex point ~ 1 = 1 we have the unique nonnegative definite 

solution 

K ( 1) 

1.61 

0.01 

0 

0 

0.01 0 0 

1. 58 0 0 

0 0 0 

0 0 0 
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The I inear approximation and second order approximation are 

K*(JJ )= 1 

4.45 - 2.84)J1 

-0.16 + 0.17JJ1 

-1 . 13 ( 1-)J 1 ) 

- 0. 16 + 0. 17JJ1 

1.23 + 0.35JJ1 

0 . 09 ( 1 -jJ 1 ) 

- 1.13(1-)J1) 

0 • 09 ( 1 -JJ 1 ) 

0 .69(1-jJ1) 

o. oa ( 1-JJ1) 0.02(1-)J1) - 0.02(1-jJ1) 

4.45 + 8.86)J1 

-0 • 16 - 1 • 20)J 1 

-1.13- 1.96JJ1 

0.02 + 0.26)J1 

2 
-13- 1.96JJ1 + 3.09)J1 

2 
o.o9 + o.32JJ1 - o.41JJ1 

0.69 + 0.34JJ1 - 1.03JJt 

0.08 - 0.08)J1 

0. 16 - 1 • 20)J1 

1.23 + 0.60)J1 

0.09 + 0.32JJ1 

- 0.02 + 0.02)J~ 

0.02 + 0.26jJ1 

- 0.02 + 0.02jJ~ 
0.08 - 0.08)J1 

0.12 - 0.08jJ1 

0.02(1-)J1) 

- 0.02(1-JJ1) 

0.08(1-)J1} 

0.12(1-jJ1) 

The value functions for exact solution K(JJ1), linear and second order 

approximation of K(JJ 1} and initial condition x~ = [1 1] are given 

in Table 2. The largest error for 1 inear approximation is 10% and for 

second order approximation is 1.9%. Eigenvalues of the closed loop systems 

for exact K(JJ 1) and second order approximation K*(JJ 1) are given in 

Table 3. 
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J -J 
(J*-J) ·1 00% 1 

\.11 J J1 (-) ·100% J"' J J 

0.0 2.129 2.129 0.00 2.129 0.00 

0.1 2.182 2.190 0-37 2.194 0.55 

0.2 2.225 2.256 1.40 2.254 1.30 

0.3 2.255 2.324 3.06 2.295 1.77 

0.4 2.271 2.391 5.30 2.314 1.90 

0.5 2.271 2.445 7.66 2.307 1.59 

0.6 2.250 2.464 9.50 2.274 1.07 

0.7 2.198 2.418 10.00 2.209 0.50 

0.8 2.103 2.275 8.17 2.105 0.09 

0.9 1 .933 2.010 3.99 1 .934 0.05 

1.0 1.606 1 .606 0.00 1.606 0.00 

Table 2. Value functions 
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J..ll 
Closed Loop Closed Loop Closed Loop 

Optimal Linear Second Order 
Approximation Approximation 

-12.27 -12.27 -12.27 

0.0 - 4.42 - 4.42 - 4.42 
- 2+j - 2+j - 2+j 
- 2-j - 2-j - 2-j 

-11 .65 -11 . 40 -12.00 

0.1 - 4.38 - 4.35 - 4.35 
-2.16+j0.78 -·2.09+ jO .51 -2.25+j1.02 
-2.16-j0.78 -2.09-j0.51 -2.25-j1.02 

-11.01 -10.52 -11.61 
0.2 - 4.32 - 4.24 - 4.26 

-2.31+j0.43 - 2.94 -2.48+j0.92 
-2.31-j0.43 - 1 .48 -2.48-j0.92 

-10.32 - 9.63 -11 . 06 

0.3 - 4.23 - 3.83 - 4.10 
- 3.02 - 3.79 -2.72+j0.67 
- 1.95 - 1 . 17 -2.72-j0.67 

- 9.58 - 8.73 -10.37 
0.4 - 3.95 -3.98+j0.53 -3.66+j0.35 

- 3.73 -3.98-j0.53 -3.66-j0.35 
- 1. 75 0.98 - 2.47 

- 8.78 - 7.81 - 9.52 
0.5 -4.00+j0.47 -4 . 12+ j 0 . 72 -3.94+j0.69 

-4.00-j0.47 -4. 12- j 0. 72 -3.94-j0.69 
- 1 .64 - 0.86 - 2.10 

- ].90 - 6.89 - 8.52 
0.6 -4 . 1 5+ j 0 . 64 -4.23+j 1.87 -4.13+j0.83 

-4.15-j0.64 -4.23- j 1.87 -4.13-j0.83 
- 1 .57 - 0.80 - 1 .87 
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- 6.91 - 6.00 - 7.34 

0.7 -4.28+j0.77 -4.30+j1.03 -4.28+j0.91 
-4.28- jO. 77 -4.30-j1.03 -4.28-j0.91 

- 1.53 - 0. 79 - 1.67 

- 5.83 - 5.33 - 6.05 

0.8 -4.37+j0.94 -4.23+j1.19 -4.37+j1.03 
-4.37-j0.94 -4.23-j1.19 -4.37-jl.03 

- 1.50 - 0.87 - 1.52 

- 5.02 - 4.93 - 5.07 
-4 . 1 7+ j 1 . 1 3 -3 . 94+ j 1 . 16 -4 . 16+ j 1 . 16 
-4. 1 7- j 1 . 13 -3.94-j1.16 -4.16-j1.16 

-1.52 - 1.08 - 1.45 

- 4.45 - 4.45 - 4.45 
- 4.00 - 4.00 - 4.00 
- 2.69 - 2.69 - 2.69 
- 2.00 - 2.00 - 2.00 

Table 7. Eigenvalues, 

6. CONCLUSIONS 

Results presented here are constrained to the 1 inear quadratic cont-

rol problems although, in principle, the method can, be extended to a 

broader class of problem. Numerous applications that stem from the gene-

raJ ization of 1 inear regulator problems to vector valued linear regula-

tor problems can be envisioned. Typical application is the multiple 

target problem /7/. The methodology may also be generalized to the study 

of coalition problem in multiplayer games whereby the Pareto optimality 

concept, and minimax pareto solution in particular, and the Nash equil i-

brium concept may be used to define the rules of play in the ensuing 
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1. INTRODUCTION 

PART I 
PREFERENCE OPTIMALITY 

127 

To a layman one might explain the meaning of "optimization" as fol­

lows: Consider any process whatever which may be described mathematically, 

and whose outcome may be influenced by a set of possible decisions. 

Associate with the process a numerical criterion whose value depends on 

the decision and corresponding outcome of the process. "Optimization" 

then means that the decision is to be made so as to yield a maximum or a 

minimum numerical value of the criterion; that is, the criterion serves 

as a means of comparing different decisions and their outcomes. 

A more general process is one where several criteria are associated 

with a given process. Such a situation may be interpreted as a problem 

for a single decision maker 1-1ho wishes to "optimize" several criteria 
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s1multaneously, or as a cooperative game where each criterion represents 

a player, and the players then cooperate, that is act in unison as a 

single player, with the desire to collectively "optimize" their criteria. 

The problem here will be viewed in the former context. Clearly, there is 

no single solution concept for this type of problem, rather the choice of 

what is to be "optimal" depends on the situation. To be sure, many such 

solution concepts exist; a partial review and bibliography of such con­

cepts may be found in Yu and Leitmann 1• One of these concepts is 

preference optimality which was introduced by Stadler 2•3• 

For definiteness in all of the following discussion two basic formu­

lations for multicriteria problems will be given next. Most vector-valued 

criteria problems in programming and in optimal control may be formulated 

in this manner; the formulation is basic in that the meaning of "optimal" 

has been left open. As has been mentioned, there are a number of differ­

ent optimality concepts when several criteria are involved; preference 

optimality is one such concept. In the statement of the multicriteria 

programming problem the following notation is employed for points x,y Em": 

(i) X~ y ~ Xi~ Yi ViE I= {l, ... ,n}; 

(ii) X< y ~ Xi~ Yi V i E I, and X* y; 

(iii) X<< y ~ Xi< Yi V i E I. 

It will be apparent later that this relation is an example of a partial 

ordering; it is usually called the coordinatel'lise ordering of JR". The 

notation here differs somewhat from the usual in that inequality is 

emphasized (<,<<) rather than equality (~.~) as is generally done in 

programming. Throughout, the use of ~. < and << in connection with 
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vectors is to be interpreted in this light. All the concepts concerning 

orderings and preorderings will be made mathematically precise in Sec­

tion 3. In some instances of the following the same symbol has been used 

to denote different quantities; this should cause no confusiont howevert 

since their meaning should be clear from the context. 

I. The Programming Problem 

Let Q(open) £mn and introduce the inequality constraints 

f( ·): n -+ lRm t 

and the equality constraints 

h(·): n -+lRkt 

so that the functional constraint set is given by 

X = {X En: f(x) ~ Ot h(x) = 0}. 

The criterion functions are 

gi(·): X -+lRt i = l, ... ,N, 

with corresponding criterion vector 

g(•) = (gl(•), ••. ,gN(·)), 

and values g(x) e JRN, the criteria space. 

In the programming problem as in the yet to be defined control prob­

lem frequent use is made of the attainable criteria set, that is the set 

of numerical values of the criterion functions gi(·) which may be attained 

as a consequence of the available decisions. 

Definition 1.1. Attainable criteria set for Problem I. A criterion 

value y eRN is attainable iff there exists an x e X such that g(x) = y. 

The attainable criteria set consists of all such attainable criterion 
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v a 1 u es ; i t is 

y = {y ERN: y = g(x), X EX}. 0 

The progranming problem may be stated as: Obtain the "optimal" 

decision(s) x* E X for 

g(x) subject to x E X. 

II. The Control Problem 
n Let the state x E A(open) em be controlled by means of a control 

u( ·): [to, t1 lt -+ U c !Rr in the system equations 

x = f(x,u) ( 1.1) 

with x(to) E e0 ~ the initial set, and x(t1) E e1 ~ the terminal set, and 

with the independent variable t included as a state variable xn = t, so 

that fn(x,u) = 1. Furthermore, f(·): A XU-+ B(open) c !Rn, and U is the 

set of permissible values of u(·); thus U is called the control constraint 

set. 

It is usual to confine oneself to a set of admissible controls. 

Definition 1.2. Admissible controls. A control u(•): [to ,tJ]-+ U 

is admissible iff 

(i) U(bounded) c !Rr, 

(ii) u(·) is Lebesgue measurable, 

(iii) u(·) generates a solution x(•): [to ,t1]-+ A of equation (1.1) 

such that x(to) E e0 and x(t1) E e1. o 

t [to,t1] may be prescribed or it may be left unspecified; this 
question will be treated in more detail in Section 4. 
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The set of admissible controls is denoted by T; it is assumed to be 

non-empty. 

Strictly speaking, a solution of equation (1.1) is a functions(·) 

of the initial conditions, the initial value ~ of t, and of t; for a 

given initial condition x0 and an initial value ~ it satisfies 

x(t) = s(x0 .~ ;t}. In addition, such a solution may be non-unique, with­

out further assumptions on f(·). These dependencies are suppressed since 

they are not relevant to the present discussion. 

The criterion vector 

is defined in terms of the integrals 

Itt 
g1.(u(·)) = f .(x(t),u(t))dt, 

~ 01 
( 1 . 2) 

= 1 , ... ,N, where the dependence on the initial state has again been 

suppressed. 
n The state space 1R is augmented by introducing a criterion response 

y = f0 (x,u) with y{to) = 0, ( 1 . 3) 

where y E lRN, the criteria space, and where f 0 = (f01 , ••• ,f0 N). 

In this context one may now define the attainable criteria set for 

the optimal control problem. 

Definition 1.3. Attainable criteria set for Problem II. Let u(·) 

be an admissible control and x(·) a corresponding solution of equa­

tion (1.1). For every tE [to,t.] the attainable criteria set K(t) is 

the set of all response points y(t) ERN, where y(·) is a solution of 

(1.3). In particular, the set K(t.) is the set of all y(t.). D 
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See Lee and Markus 4 for a more detailed discussion of the set of 

attainability of a system of differential equations. 

One may state the multicriteria control problem as: Obtain the 

"optimal" control(s) u*(·) E J' for 

g(u(·)) subject to x = f(x,u). 

Ideally, a solution concept for these problems should tie into 

existing theory in programming and optimal control. This goal was pur­

sued here; that is, the theorems developed here were based on existing 

theorems in these fields, wherever possible. 

Preference optimality is based on the concept of preferences which 

is well established in mathematical economics, but has had little or no 

application in multicriteria decision problems. A usual assumption (e.g., 

see Debreu 5 there is that each of N consumers has a preference pre-

ordering ~ over his consumption set and that he is a maximizer of 

preference, whereas the producer is a maximizer of profit. Subject to 

certain wealth and equilibrium constraints, this preordering then is used 

to induce a partial preordering of the combined allocation space of con­

sumers and producers with the final objective of finding a maximal element 

for the partial preordering. The present procedure leans on this approach. 

However, instead of a preordering on the consumption (or decision) set, a 

preorderi ng :S here is introduced on the criteria space lRN. This pre­

ordering is induced on the attainable criteria sets Y and K(t, ), and 

preference optimality is then defined in terms of least (or greatest) 

elements for the preordered set (Y,~) or (K(t, ),:::S). 



Preference Optimality 

Ya 

133 

In a practical context the 

problem may be visualized in the 

following manner. Suppose the 

x = (1 pair of shoes, 4 coats) production of amounts gi(u(·)) 

pairs of shoes Y1 

Fig. 1. A preference relation. 

i = l, •.• ,N of the individual goods. 

of N different goods collectively 

depends on a dynamic process 

given by x = f(x,u), that is, 

corresponding to, say, a raw-

material input u(•), the process 

generates amounts g.(u(·)), 
1 

For example, g1 (u(•)) could be the 

number of pairs of leather shoes and~ (u(·)) the number of leather coats 

which are produced from a daily supply u(·) of raw hides. Assume now 

that in terms of overall efficiency the producer is indifferent among 

productions of batches of 8 pairs of shoes and 2 coats, or 5 pairs and 

5 coats, or 7 pairs and 3 coats, and so on, as long as the total number 

of produced units is 10. The assumption of perfect divisibility of the 

goods then yields a straight line in the criteria (pairs of shoes, coats)­

space; such a line is called a product transformation curve in the theory 

of the firm. Here it is simply called an indifference set or an equiva­

lence class; that is, production pairs y = (y, ,y1) which lie on this line 

are equivalent. If one further assumes that 11 items are preferred to 10, 

and so on, then one obtains a preference preordering on mt (the set 

ffi~ = {X E IRn: X ;;;. 0}), with X >- y (x preferred to y) iff Xt + X1 > Yt + Y1 

and x- y iff x, + x1 = y, + Y1. The situation fs illustrated in Figure 1. 
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For another rudimentary discussion of the establishment of a preference 

relation see Samuelson 6. Naturally a more detailed discussion of pre-

ferences will be given in subsequent sections; however, the feasibility 

of obtaining such a preference relation in practice is not touched upon 

here. The arguments pro and con are the same as those given in Economics. 

The next two sections contain some mathematical preliminaries which 

may not be readily available. 

2. MATHEMATICAL PRELIMINARIES: CONVEXITY 

As one might expect, convexity plays a large part in the derivation 

of sufficient conditions. For the convenience of the reader some relevant 

theorems are quoted here without proof, with most of them stemming from 

Ma • 7 ngasar1an In the cited theorems and definitions M em" and 

<P (.): M __. JR. 

Definition 2.1. Convexity. The function~(·) is convex with respect 

to Mat x E M iff x EM, e E [0,1], and (1-e)x + ex EM imply 

(1-e).p(x) + ec~>(x);;;. c~>((l-e)x +ex). o 

Definition 2.2. Quasiconvexity. The function c~>(·) is quasiconvex 

with resp~ct to Mat x EM iff x EM, .p(x) ~ c~>(x), e E [0,1], and 

(1-e)x + ex EM imply 

.p((l-e)x + ex) E;; c~>(x). o 

Definition 2.3. Pseudoconvexity. Let c~>(·) be differentiable. The 

function c~>(·) is pseudoconvex with respect toM at x EM iff x EM, and 

~.p(x)(x-x);;;. o imply .p(x) ~ c~>(x). o 
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It follows that~(·) is convex or quasiconvex on a convex set Miff 

~(·)is convex or quasiconvex at every point of M. 

Theorem 2.1. let g(·): M 4 RN. Assume that g(·) (that is, each of 

the component functions gi(·)) is convex at x eM (convex on a convex set 

M), and that c ~ 0, c E mN, then 

~ ( • ) = cg ( • ) 

is convex at x {convex on a convex set ~1). o 

Note that there is no similar theorem for quasiconvex or pseudocon­

vex functions. 

Theorem 2.2. let M be open. Assume that~{·) is differentiable at 

x eM. If~(·) is convex at x eM, then 

~(x) - ~{x) ~ v~{x){x - x) 

for each x e M. o 

Theorem 2.3. let M be open. let x1 , x2 EM and assume that 4>{·) is 

differentiable and quasiconvex at x1 • Then 

4> (x2 ) < 4>{x1 ) => V4>(x 1 )(x2 - x1 ) < 0. o 

Theorem 2.4. let M be convex. A necessary but not sufficient con­

dition for~(·) to be convex on M is that the set 

A ={X EM: ~(x) ~ v} C M cmn 
v 

be a convex set for each v e ffi. o 

Theorem 2.5. let M be convex. let A = {x eM: 4>(x) ~ v }. Then 
v 

~(·)is quasiconcave on Miff Avis convex for each v em. o 

Theorem 2.6. let M be open and convex and let~(·) be twice differ­

entiable. Then+(·) is convex on Miff the quadratic form 
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n r 4> .. (x)r;.c ' 
i,J=l 1J 1 J 

4>·. = a24> (x) 
lJ ClX·dX· 

1 J 

is oositive semidefinite in the variables ~ , ...• ~ for every x eM. 
1 n 

Theorem 2.7. Let Q(~.~) = < ~.Q~ >be a quadratic form defined on mn, 

and let Q be the corresponding nxn matrix. Let a1 , ••• ,an be the eigen­

values of Q. Then the quadratic form is negative definite iff 

a;< 0 for all 1 E {l, ... ,n}. D 

3. MATHEMATICAL PRELIMINARIES: ORDERINGS AND PREFERENCES 

The fundamental concept involved in all of the following discussion 

is that of a preference relation. In its most general form a preference 

relation on a set M is nothing but a binary relation on M, which has been 

put to a particular use, namely it is to provide a hierarchy among the 

elements of M. Thus, the next definition serves more as an introduction 

of terminology than as a definition of specific properties of such rela­

tions. By convention this definition is stated in terms of a maximizer 

over preferences. 

Definition 3. 1. Preference relation. Let M be an arbitrary set and 

let x,y e M. A strict preference on M is a binary relation on M denoted 

by -<. One reads "x-< y" as "x is less preferred than y" or "y is 

preferred to x". The absence of strict preference is defined by indif-

ference - , and one reads "x - y" as "x is indifferent to y" (or 

"x is equivalent to y", if - is an equivalence relation). The juxtaposi-

tion of these two binary relations on M is a preference-indifference 

relation, or simoly a preference relation. Thus, "x::; y" means that 
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either <or -may hold. In this context one defines t by y t x iff x ~ y, 

11 X -;5 y and y ::::$ X 11 is written as 11 X - y .. , and Hx ~ y and not y :S x" is 

written as "x-< y" (or "y >- x••). t o 

To make such relations a useful concept, various additional structure 

is imposed upon them. Among these possible additional properties, some 

are in such frequent use that special names have been given to preference 

relations which have them. The symbol " = " is to be taken as a mathe­

matical primitive denoting "is identical with". 

Definition 3.2. Ordering relations. Consider the following proper-

ties for a preference relation~ defined on a set M with x,y,z eM: 

(i) x ~ x for every x eM (reflexivity); 

(ii) 11 X ::$ y and y ~ z" .. "x ~ z" (transitivHy); 

(iii) 11 X ~ y and y :S x" .. "x = y11 (anti symmetry); 

(iv) for any x,y e M, either x ~ y or y ~ x or both (connexity). 

Collectively one then defines: 

(1) (i) and (ii) together as a partial preordering;tt 

(2) (i), (ii) and (iii) together as a partial ordering; 

(3) the inclusion of (iv) in (1) [respectively (2)] as a complete 

preordering [respectively complete ordering]. o 

Naturally, this by no means exhausts the properties which preference 

relations may have. An extensive mathematical treatment of the properties 

of preference relations and some of their consequences is given by 

t The introduction of the notation ~for a preordering is ascribed 
to I.N. Herstein and J. Milnor: An Axiomatic Approach to Measurable 
Utility, Econometrica, 21, 1953, pp. 291-297. 

tt The term "preordering•• stems from N. Bourbaki: Elements de 
mathematique, Paris, Hermann, 1939- • 
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Fishburn 8• Only those additional oroperties which are relevant to the 

oresent treatment will be defined here. In oarticular, the necessary 

conditions for preference ootimality deoend strongly on differentiability 

properties; to define these, the concept of a hypersurface in mn is 

needed. Furthermore, the proof of Debreu•s Theorem 9 leans heavily on 

the theory of differentiable manifolds. A good treatment of the latter 

subject may be found in Matsushima 10 and in Soivak 11 . 

Definition 3.3. Hypersurface. A set of points M in m" is a 
k C -hypersurface iff for every z e M, there are an open neighborhood V of z, 

a Ck-diffeomorphism h(·) of V onto an open set Win mn and a hyperplane H 

in mn such that M n Vis carried by h(·) into H n W. o 

In other words, a subset M of mn is a ck-hypersurface in mn if it is 

an (n-1)-dimensional embedded ck-submanifold of mn, where the inclusion 

mapping i(·): M -+1Rn may be used as the imbedding. 

In defining further properties of oreference relations, there are 

some sets which recur with enough frequency to warrant citing them here 

collectively. Again, let M be an arbitrary set and let~ be a oreference 

relation on M. For every y e M, let 

with 

S(y) = {X E M: X - y} 

S+(y) = {X E M: X ~ y} 

S-(y) = {X E M: X~ y}, 

s+(y) = {X E M: X t y}, 

s- (y) = {X EM: X ~ y}. 
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let their corresponding graphs in MxM be 

S = {(x,y) E MxM: X- y}, 

S+ = {(x,y) E MxM: X > y}, 

S- • {(x,y) E MxM: X-< y}, 
-+ S = {(x,y) E MxM: x ).:y}, 

s- = {(x,y) E MxM: X ~ y}. 
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Properly, one should take these graphs as definitive of the corresponding 

preference relations. 

Definition 3.4. Properties of preference relations. M is an 

arbitrary set unless otherwise mentioned. 

(i) Continuity. A preference relation~ on M is continuous iff 
-+ -for every y e M the sets S (y) and s-(y) are closed in M. 

(ii) Monotonicity. let M ~mn. A strict preference~ on M is 

(1) weakly monotone iff for x,y eM, x << y ~ x ~ y; 

(2) monotone iff for x,y e M, x < y ~ x < y. 

(111) Differentiability. A preference relation~ on a set M ~mn 

is of class ck on M iff S is a ck-hypersurface in mn. 

(iv) Convexity. A preference relation ~ on a convex set M is 

(1) weakly convex iff x ~ y ~ex+ (1-a)y ~ y V a e [0,1]; 

(2) convex iff x >-y • ax+ (1-e)y >-y V a e (0,1]; 

(3) strongly convex iff x- y, x-:~= y, • ex+ (1-e)y >- y 

vee (0,1). 

(v) Completeness. A preference relation ~on M is complete iff 

for any x,y eM, either x ~Y or y ~ x or both is the case. o 
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It is helpful to note that the statements (iv)(l), (2) and (3) are 
-+ + equivalent to: For every y eM, (1) S (y) is a convex set, (2) S (y) is 

a convex set, (3) s+(y) is a strictly convex set. Successively, (2) and 

(3) disallow thick indifference sets and indifference sets with corners. 

Furthermore, it should be kept in mind that some of the above properties, 

such as those concerning convexit~ may require additional assumptions, 

such as completeness, in order to make sense in general. Some further 

discussion of these aspects, including their application in the theory of 

economic equilibria may be found in Debreu 5• 

Together with preference relations on sets it is natural to consider 

elements which are "most preferred" with respect to these preference 

relations. In particular, such elements are defined for ordered sets. 

Definition 3.5. Optimal elements. Let (M, ::S) be a partially 

ordered [partially preordered] set. Then, 

(i) an element xD eM is a minimal element of M iff one has: for 

every x eM such that x is comparable to xD, x ~ xO • x = xO 

[x ~ xD]; an element x1 e M is a maximal element iff one has: 

for every x eM such that x is comparable to xl, 

xl ~ x • x1 = x [x1 ~ x]; 

(ii) an element xO eM is a least element of Miff xO~ x for 

every x e M, and xl e M is a greatest element iff x ~ xl for 

every x e M. 

Note that minimal (maximal) elements need only be comparable to a 

subset of M, whereas least (greatest) elements must be comparable to 

every x e M. For a given (M, ::S) none of these elements need exist; 
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however, when they do, they have more or less obvious properties, some of 

which are listed next. 

M is an ordered set. If the ordering is a partial ordering, then: 

(1} a least element (if it exists) is the unique minimal element; 

however, M may have a unique minimal element, but no least 

element; 

(if} a least element (if it exists} is unique by antisymmetry; 

(iii} it is generally possible to have minimal elements, which are 

not least elements. 

Finally, if~ is a complete (linear} ordering, then the distinction 

disappears, that is, a minimal element is also a least element. 

then: 

M is a preordered set. If the preordering is a partial preordering, 

(i) a least element or a minimal element (if it exists) need not 

be unique; 

(ii) a least element (if it exists) is also a minimal element. 

Again, there is no distinction when ~is a complete preordering. 

Clearly, these remarks have obvious analogues for maximal (greatest) 

elements. 

The basic assumption for preference optimality is that the criteria 
N 

space m , or a subset thereof, has been preordered by a preference rela-

tion ~which is a complete preordering, and which is induced on the set Y 

or K(t1 ). If the basic desire is to minimize the criteria, then the 

intent is to obtain an element y* e Y or y* e K(t1 ), which is a least 

e 1 ement with respect to the oreorderi ng ;S • 
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A concept which greatly facilitates any calculations with preferences 

is that of a utility function or order-preserving function; that is, a 

real-valued function whose numerical values with the usual ordering on m, 
faithfully reflect the preferences introduced on the set M. In particular, 

if+(·): M ~m is such a function, then one would like to at least have 

it satisfy "x -< y • +(x) < +(y)" for x,y E M. A basic problem in prefer-

ence and utility theory, however, concerns the conditions on ~subject to 

which there exists such a function+(·). That such a function need not 

exist at all, even when ~is a complete preordering, is evidenced by the 

example of a lexicographic ordering on m2 , which cannot be represented by 

a utility function. The first appearance of this example in preference 

literature is ascribed to Debreu 12 , although it had been treated earlier 

in the mathematical literature. An extensive, and well-written, survey 

of lexicographic orderings is given by Fishburn 13 . For the present 

treatment it suffices to define a utility function in the following, com-

monly used manner. 

Definition 3.6. Utility function. Let ~be a preference relation 

on a set M. A real-valued function+(·): M ~m is a utility function for 

:S on M iff for every x,y E M: 

x ~ y o + (x) < + (y), 

x - y • +(x) = +(y), 

x -< y o +(x) < +(y). o 

To eliminate any possible confusion in some of the later discussion, 

the definition of a strictly increasing function is given here. 

Definition 3.7. Strictly increasing function. Let M c m. A function 
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F(•): M +ffi is strictly increasing on Miff x,y eM and x < y • 

F(x) < F(y). o 
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Note now that if F(•) is a strictly increasing function onm and;(·) 

is a utility function for~ on a set M, then~(·) = Fo;(•) is another util­

ity function for~ on M, so that there is nothing unique about a utility 

function. Once the existence of a utility function has been established 

it becomes of interest, of course, to discover further conditions on ~. 

which allow one to endow +(•) with some additional properties such as con­

tinuity and differentiability. A usual procedure in consumer theory is 

to restrict all sets under consideration (such as consumptions sets, etc.) 

to be subsets of the open positive cone ofmN defined by 

P = {X E ffiN: X >> 0}. 

The set P will recur frequently in this article. 

To show the existence of a preference optimal control or decision 

the continuity of the utility function will be needed. A number of 

theorems concerning this topic have appeared in the literature with some 

of the major results being due to Eilenberg 14, Rader 15 and Debreu 16 . 

It suffices to make use of Eilenberg's theorem. A more refined theorem 

may be given by introducing additional concepts of utility theory (e.g., 

see Fishburn 8). The theorem here is stated for P cmN. 

Theorem 3.1. [Eilenberg]. Let~ be continuous, and a complete 

preordering of P. Then there exists a utility function~(·) which is 

continuous on P.t o 

t Obviously, this is the theorem which gave impetus to the defini­
tion of the continuity of a preference relation. 
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It has already been mentioned that the differentiability of the 

preference relation is needed in the necessary conditions for preference 

optimality. It is needed to assure the existence of a differentiable 

utility function, an assurance which follows from the next theorem, due 

to Debreu 9. 

Theorem 3.2. [Debreu]. The following statements are equivalent; 

that is, any one of them implies the other two. There exists on P, 

(i) a preference relation ~which is a complete preordering, 

weakly monotone, continuous and of class c2 on P; 

(ii) a utility function~(·} of class c2 whose derivative satis­

fies v~(y) > 0 for every y E P; 

(iii) a C'-vector field v(·): P-+ P n sN ={yEP: llyll = 1}, with 

v(y) > 0 for every yEP, and such that v(·) satisfies the 

Frobenius condition 

L v.(y)(~(y)- 2.Yk(y}) = 0 
i,j,k , ayk ayj 

(cyclic sum} 

for i,j,k, = l, ... ,N, ~yEP. o 

All of the sufficiency theorems depend on at least the assured pseu­

do-convexity of a utility function~(·) for~ on P. This assurance may 

be available a priori for an explicitly known utility function, it may 

be implied by conditions imposed on the preference relation, or an arbi-

. trary utility function~(·) may be given, for which there exists a con­

vexifying transformation. More specifically, the next theorem provides 

an answer to the question: Given~(·), whose level sets are the indiffer­

ence surfaces of the preference relation on P, under what conditions on 



Preference Optimality 145 

+(·) does there exist a strictly increasing, twice differentiable func­

tion F(·) such that~(·) = Fo+(·) is a convex utility function for~ on 

P? Without differentiability assumptions this problem was first treated 

by de Finetti 17 and subsequently by Fenchel 18 , who also derived further 

results based on the inclusion of differentiability assumptions 19, The 

results obtained in the last reference are summarized here in the form 

of a theorem. Whenever possible the notation used by Fenchel has been 

retained: 

For y e P use 

+; (y) = ~ (y) and +;J·(Y) = a2p (y), 
ayi CIY;CIYj 

to define on P the quadratic form 

N N 
Q(~.~) =. ~ +ij(y)~i~. + cr(y)(.I +i(y)~.)2 

1,J=l J 1=1 1 
(3.1) 

where a(y) is a suitable Lagrange multiplier, which one may relate to 

F( •) by 

- F"(p(y)) 
a (y) - • 

F I (. (y)) 
(3.2) 

for every y E M. The primes denote differentiation ~lith respect to the 

argument of F(•). For every y EM define 

k2(y) = ·~(y) + ·~(y) + ... + ·~(y) (3.3} 

along with the two characteristic polynomials 
N N r(a) = l+;j{y) - a6ijl = DN- DN-la + ••• + (-1) D0u {3.4} 
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r*(a) = - _1_ 14>;/Y) - aoij cpi (y) 
k2(y) I cpj(y} o 

D* o* (-l}N-lo*o~N-1. = N-1 - N-2a + ••• + ~ ( 3. 5) 

The D are the elementary symmetric functions of the characteristic 
\) 

polynomials. With roots ap .. .,aN of r(a}, and with 00 = 1, these are 

given by 

N N 
D1 = La;, 02 = l aiaj, 

i=l i,j=l 
i < j 

N 
L aiajak•• .• , 

i,j,k=l 
i < j < k 

With o: = 1, the o: are similarly defined. 

Furthermore, let 

£ = inf {cp(y): y E P} and e = sup {cp(y): yEP} 

with±~ permitted. The notation (=) in 

£ < t < 8 
(=} 

means that equality holds iff cp{•) has a minimum on P. 

(3.6) 

Theorem 3.3. [Fenchel]. Assume that cp{•) is a twice differen­

tiable function on P. The following conditions are necessary and 

sufficient for the existence of a twice differentiable strictly increas­

ing function F(·): m ~m such that~(·) = Focj~(•} is a convex utility 

function on P: 

(i} The function cp(·} either has no stationary values or it has 

only an absolute minimum on P. 

(ii) The quadratic form Q(~.~) is positive semidefinite for every 

y E P. 
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(iii) If the rank of the matrix of the quadratic form Q(~.~) is 

r(y)-1 at the pointy e P, then the rank of the matrix [~ij(y)] 

is at most r(y). 

(iv) For every fixed t with E < t < B 

D 
G(t) = sup{- r * ~(y) = t, y e P} < ~. 

k2(y)Dr-l 

(v) There exists a function H(•): [E,a) +m such that H(t) > 0 

on (E,B), H(·) is differentiable forE< t < e, and such that 
(=) 

G(t) <~{H) (here H'(t) = ~t)). o 

The results of the following sections are based on a few general 

assumptions; for clarity these are given next in a separate section. 

4. ASSUMPTIONS 

The possible restrictions on the theory, due to these assumptions, 

are discussed at the end of this section. 

Assumption 1. All of the theorems concerning preference optimality 

are stated with minimization as the basic objective. 

Assumption 2. All of the control-theoretic arguments are based on 

a fixed interval [t0,t1] of the independent variable. 

Assumption 3. The sets Y and K{t 1) are subsets of P. 

Assumption 4. For every y E P the set S(y) is a hypersurface in m>1• 

and a normal vector n(y) to S(y) at y is knmm for every y E P. 

The first assumption imposes no restrictions; it is simply a state­

ment to the effect that each criterion function, when considered by 
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itself, is to be minimized. The second assumption imposes no restrictions 

either, since a control problem with open value t may be transformed to 

one with fixed interval [t0 ,t 1] by means of a simple linear fractional 

transformation (see Long 20 and Leitmann 21 ). The third assumption will 

not affect any of the work to be done here as long as Y and K(t 1) are 

bounded below in the coordinatewise ordering, since a translation of the 

sets will not effect the minimization process. Next, if S(y) is known 

and S(y) is, say, a cl-hypersurface in mN, then a normal vector to S(y) 

at a given x, x E S(y) may be constructed. 

5. NECESSARY CONDITIONS 

It is instructive to introduce the basic concepts by means of a 

simple example in ffi2 • It will serve to illustrate the method to be used 

in the proof of the general maximum principle. 

The discussion of this example is intended to give a feeling for the 

concepts and for the mathematically equivalent notions. The example is 

purposely kept simple so as not to obscure the relevant points by unnec­

essary manipulations. The structure of the example makes it desirable 

to deal with what is basically a maximization problem. 

A manufacturer has a production process 

(5.1) 

which he controls by means of a control u(·) = (u 1 (·),u2(·)) with result­

ing criterion values given by 

g1(u(·)) = J
0
1x1(t)cos u2(t)dt and g2(u(•)) = J1x1(t)sin u2(t)dt 

0 (5.2) 
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·of pairs of leather shoes and leather coats respectively. The process 

initiates with x1(0) = 0 and the available controls are constrained by 

u E U = {u E JR2 : 2.;; u1 .;; 4, 0.;; u2 .;; i'}· Note that g1(u(•)) and 

g2 (u(·)) are always greater than or equal to zero so that P, the 

closed positive cone ofiR2 , suffices as criteria space. Here, x1(·) may 

be thought of as machine-use time and the ui(·) as raw material supplies. 

Suppose it turns out that for a:> 1 the manufacturer's profit margin 

remains the same as long as the amounts y1 and y2 of pairs of shoes and 

coats belong to a set 
- a 

S = {y E P: y = --- 1}. 
a 2 Yl + 1 

(5.3) 

In addition, however, the parameter a effectively represents the extent 

to which the process may be used to improve the company's public image; 

that is, the greater the value a, the more the benefit to the company's 

image. 

Note now that a1 ~ a2 ~Sa n Sa =¢,and that P = u{Sa: a~ 1}; 
l 2 

0 yl 

Fig. 2. Indifference sets. 

the collection~= {Sa: a~ 1} is a 

decomposition of P. As such it 

defines an equivalence relation ~ 

on P; that is, if Sa is the equiva­

lence class of z E P. then 

zl "' z iff zl E S . In still dif-a 
ferent terms, the set of equivalence 

c 1 asses, 1J , is sometimes ca 11 ed the 

quotient P/"' of P with respect to 

the equivalence relation. More 
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detailed discussions of these equivalent concepts may be found in any 

basic text on topology, e.g., Willard 22. Some of these equivalence 

classes or indifference sets are shown in Figure 2. 

The notion of preference follows from the fact that among any two 

members of the collection 1), say Sa1 and Sa2 with a2 ;;;.. a1 , the manufac­

turer prefers the one with the larger value, a2 ; that is, some 11 pointS 11 

in the quotient are preferred to others. t4ore precisely, for a;;;.. 1 let 

s: = {yeP: y2 > a+ 1 - 1} and s; ={yeP: y < a - 1}. 
yl 2 yl + 1 (5.4) 

Then with z0 e Sa, z :>z 0 (z is preferred to z0 ) iff z E s:. and z-< z0 

iff z e S~. Furthermore, z ~ z0 (z is not preferred to z0) iff 

z e Sa us;, and z t zO iff z e Sa us!. The equivalence relation ~ 

together with the asymmetric relation -<constitute a preference relation 

which is a complete preordering of P. As before, the preference state­

ments have been made with respect~o someone whose basic objective is 

maximization. 

The manufacturer thus seeks a control u*(·) which results in a 

greatest element for~ on K(l) c. P. 

In the next section it will become apparent that the following steps 

are quite generally applicable. First the state spacelRn is augmented by 

introducing a criterion response 

(5.5) . y2 = x1sin u2 

withy= (y 1 ,y2 ) ElR2 , y(O) = 0, and with resultant criterion vector y(l). 

The attaihable criteria set (see Figure 3) is 
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(5.6) 

The problem in this fonn is: "Opti­

mize" y(l) subject to 

2 
. 
y1 = x1cos u2 

y2 = x1sin u2 (5. 7) 

. 
xl = ul 

For the above choice of preference 

0 2 

Fig. 3. Attainable criteria 
set. 

relation an obvious choice of a 

utility function is given by 

~(y) = (yl + l)(y2 + 1) (5.8) 

so that one may "optimize" y(l) by maximizing <f>(y) subject to equations 

(5.7); from ~(y) ~ <f>(y*) then follows y ~ y*, and the control u*(•) E Jr, 

which yields y*(l) = y* E K(t 1), is a preference optimal control. 

This problem is best dealt with as in Leitmann 21 by further aug­

menting the system with 

i 2 = u3 , x2(0) = 0, 

subject to lu 3 1 <~with corresponding criterion 
1 

x2(1) = f u3(t)dt, 
0 

and terminal manifold 

x2 - ~(y) = 0. 

With z = (z1 ,z2,z 3 ,z4 ) = (y1,y2,x 1 ,x2 ) ~nd with~= (u 1 ,u 2 ,u 3} 

one has: 

Maximize J:u 3(t)dt subject to 

{5.9) 

( 5. 1 (')) 

(5.11) 
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. 
zl = z3cos u2 
. 

z3sin u2 z2 = 
. ( 5.12) 
z3 = ul 
. 
z4 = u3 

with obvious modifications of the relevant constraints. For the problem 

in this guise a standard maximum principle is a necessary condition. 

With A= (A 0 ,A 1 ,A 2,A 3,A 4) the H-function is 

H(A,Z,U) = A0u3 + A1z3 COS u2 + A2Z3 sin u2 + A3u1 + A4U3 

and the adjoint equations are 

~i = 0 fori = 0,1 ,2,4 

~ 3 = - A1COS u2 - A2sin u2, 

(5.13) 

(5.14) 

so that Ai(t) = di fori = 0,1,2,4, where the di•s are constants. Now 

let u*(·) be an optimal control for the problem above, and let z*(•) be 

a corresponding solution of the state equations (5.12). Then there 

necessarily exists a nonzero response A*(·) of equations (5.14) evaluated 

at (z*(t),u*(t)), with A~(t) = d~ =A~= const. ~ 0. Since u3 is uncon­

strained 

~ (A*(t),z*(t),U*(t)) = 0 
au 3 

*( ) * * is necessary, and A4 t = d4 = - A0 follows. 

(5.15) 

The initial transversality 

conditions are satisfied identically; with n in the tangent space to the 

terminal manifold, the terminal transversality conditions are given by 

4 

) A~(l) n1• = 0, 
.w 1 

(5.16) 
1=1 

subject to 
2 a~ 

n4 - ~L ay.(y*(l)) n1 = 0. 
1 =1 1 

(5.17) 
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Consequently, 

~ 1 (A*1 (1) -A;:~ (y*(l)) + n 2 (A~(l)- A;~y*(l)) + A3 (l)n 3 = 0, oyl ay2 

which implies A~(l) = 0 and 
(5.18) 

* * * *a~ * A1(t) = d1 = A1(1) = Aoay 1 (y*(l)) = A0c1 , 
(5.19) 

A~(t) = d~ = A;(l) = A~~y2 (y*(l)) = A;c2• 

The evaluation of the ci in terms of the ;y.(y*(l)) is postponed; for 
1 

the moment only the fact v~(y) > 0 V y E P is used to conclude that 

c > 0. With these results the H-function may be written as 

H(A*(t),z*(t),u) = A;lz~(t)l lc2 + c21 sin (tan- 1~ + u2 ) + A;(t)u 1 • 
1 c2 

The sup H(A*(t),z*(t),u) for u2 is attained when 
liEu 

-lC1 * tan -- + u2 = -c2 2 
TT 

( 5. 20) 

( 5.21) 

or u;(t) = tan- 1 ~~· Substitution of this result in the second of the 

* adjoint equations (5.14) yields A3(t) ~ 0 V t e [0,1], and a control~ (·) 

satisfying the necessary conditions is defined by 
-* 1~ u (t) = (4,tan- c , u3(t)) 

1 

where u3(·) may be any arbitrary, bounded and Lebesgue measurable 

control function. It follows that the control u*(·) defined by 

u*(t) = (4,tan- 1~) 

with c > 0 is a candidate for preference optimal control. 

(5.22) 

(5.?3) 

Note now that the following two part problem is equivalent to the 

development just given. As a first step, let the H-function be qiven tJy 

( 5. 24) 
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where ~ (Ao,A 1), 
. 

(yl,y2,xl) and where the adjoint equations = X = are 
. 
Ao = 0, 

(5.25) 
A 1 = - c1cos u2 - c2sin u2. 

In terms of these one then has a modified maximum principle, where the 

usual single criterion integrand has been reolaced by a scalar combination 

of criterion integrands with weighting constants (c 1 ,c2) > 0. Up to this 

point only the fact V¢(y) > 0 V y E K(t 1 ) has been used. 

An additional condition, given later, consists of the imposition of 

a compatibility condition of the form 

* c = n(y (1)), (5.26) 

* * * where n(y (1)) is normal to S(y (1)) aty (1). 

The central ideas of this section have been presented in the preced­

ing example. The mathematical concepts will now be made precise. The 

results of this section, although stated for multiple criteria problems, 

are equally valid for cooperative games; in particular, they are also 

valid, when the number of control components r < N, the number of criteria. 

Before proceeding to a maximum principle the definition of preference 

optimality is given together with a brief discussion of existence. 

Definition 5. 1. Preference optimal control. Let K(t 1 ) c P and let 

~be a complete preordering of P. A control u*(·) E Tis a preference 

optimal control iff it results in a corresponding solution x*(·) such 

. * * * that the pa1r {u (·),x (·)}generates a criterion response y (·)for 

which /(t 1 ) = y* is a least element of K(t 1 ) with respect to ;S. o 

To prove existence, only the continuity of the utility function is 

needed. Thus Theorem 3.1 is used. 
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Theorem 5.1. let K(t 1 } (compact} c P and let~ be continuous and a 

complete preordering of P. Then there exists a preference optimal con-

trol u*(·}. 

Proof: In view of Theorem 3.1 there exists a continuous utility 

function$(·} representing ~on P. Since K(t 1 } is compact there exists 

a y* E K(t 1} such that $(y*} ~ $(y} for every y E K(t 1}. This implies 

y* ~ y V y E K(t 1), that is, y* is a least element for~ on K(t 1). With 

y* E K(t 1} there exists an admissible control u*(·) which generates a 

y*(•) with terminal pointy*= y*(t1 ). The control u*(·} is preference 

optimal. • 

In general, existence may be treated as in a terminal criterion 

optimal control problem or as in a standard programming problem. 

To the extent needed, the statement of the following maximum prin­

c1 p 1 e is based on lee and ~1arkus 4. 

Theorem 5.2. Consider a control process 

x = f(x,u) (5.27) 

with f( ·} and ~ ·} continuous on lRn+r and let u( ·) E T . For each such 

u(·) with response x(·) let the criteria be 

q,(u(·)) = Jt 1 f 0i(x(t},u(t}}dt, (5.23) 
1 to 

af oi + 
f = 1, ... , N, with f 0i(·) and~·) continuous onlRn r. Let the 

preference relation ~on P be a complete preordering, continuous, 

weakly monotone, and of class c2. 
If u*(·) is preference optimal in Twith response x*{·) = (x*(·),y*(·)), 

then there exists a vector c E mN, c > 0 such that 
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N n 
H(~.~.u) = Ao .2 cifoi(x,u) + 2 Akfk(x,u) 

1=1 k=1 
(5.29) 

with~= (A 0 ,A 1, ... ,An) = (A 0 ,A), and the adjoint equations 

. N af oi n afk 
Ar = - Ao 2 c. a;--(x,u) - 2 Ak ax-<x,u), 

i =1 1 r k= 1 r 
(5.30) 

r = 0, 1, ... , n, satisfy the following conditions: 

There exists a nontrivial response~*(·): [t0 ,t1] + C(open) cml+n 

of equation (5.30) evaluated at (x*(•),u*(·)), with A~(t) =A~= const. < 0 

everywhere on [t0 ,t1] and with 
A A* A* A A* A* * sup H(A (t),x (t),u) • H(A (t),x (t),u (t)) = 0 ( 5. 31) 

uEU 

almost everywhere on [t0 ,t1]. Also, if eo and el are manifolds with 

tangent spaces To and T1 at x*(to) and x*(t1), then 

A*(t 0) is orthogonal to T0 , 

A*(t1) is orthogonal to T1 • 

Proof: Augment the state space by introducing 

y = f 0(x,u) 

(5.32) 

(5.33) 

with y(t0) = 0. By Assumption 3 the attainable criteria set K(t1) c P, 

and by the hypotheses above ~ is a· weakly monotone, continuous preference 

relation.of class C2 which completely preorders P. According to Theorem 

3.2 there thus exists a C2-utility function~(·) representing~ on P. 

Hence, the problem becomes: 

Minimize ~(y(t 1 )) subject to 

y = fO(x,u), y{t0 ) = 0 

x = f(x,u), x(t0) e eo and x(t1) Eat. 
(5.34) 
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Again, introduce 

with 

Xnt1(t,) • Jtl Ur+I(t)dt = +(y(t,)) 

to 
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(5.35) 

(5.36) 

where Ur+1(·) is any bounded Lebesgue measurable function, a condition 

which is denoted by lur+ 1 1 < ~.t In this guise the problem is: 

Minimize 

(5.37} 

subject to 

y = fO(x,u), y{t0 ) = 0, 

x = f(x,u), x(t0 ) e e0 and x(t1 ) e ei, (5.38) 

Xn+I = ur+l' xn+1(t0 ) = 0 and xn+1 (t1) - ~(y(t 1 )) = 0. 

For this problem the maximum principle in its usual form is a necessary 
. . - N+n+ 1 - - r+ 1 cond1t1on. Let x = {y,x,xn+l) ElR , u = {u,ur+l) E U cJR , 

- A N+n+2 . A= (~,A,An+l) ElR and def1ne 
_ _ N n 
H(A,x,u) = A0ur+ 1 + I $if01 (x,u) + I Akfk(x,u) + An+ 1ur+l (5.39) 

i=l k=l 

with adjoint equations ~ 0 = 0 and 

N af . n afk 
~r =- .I w. axol (x,u) - I Ak ax- (x,u) 

1 = 1 1 r k= 1 r 
(5.40) 

t Problems where the control may be any bounded measurable function 
are sometimes called free or unconstrained. 
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for r = 1 , ... ' n, and 

~n+l = 0• . 
ljls = 0, 

* for s = 1, ... , N. If u (·) is an optimal control for this last problem 

* and x (·) the corresponding response, then there exists a nontrivial 

solution of the adjoint equations (5.40) and (5.41) such that 

sup H(~*(t),x*(t),u) = H(\*(t),x*(t),u*(t)) =at 

li:u 
and A~(t) =A~= const. ~ 0. Since ur+l(.) is unconstrained 

-
aH -* -* -* -.,-.-(A (t),x (t),u (t)) = 0 
oUr+l 

is necessary, with the result 

A~+ 1 (t) =-A~= const. ~ 0. 

At t = t 0 the transversality conditions are 

A*(to) 1 To 

(5.42) 

5.43) 

(5.44) 

(5.45) 

since the remaining ones are satisfied identically. The terminal trans-

versality condi~1ons are given by 

(5.46) 

and 

(5.47) 

where the ni 's satisfy 

t Recall that the formulation involves xn = t. 
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(5.48) 

With (5.44) and (5.48) equation (5.47) becomes 

(5.49) 

Since there are no further restrictions on the ni it follows that 

1/l~(td = :l.~:ti(y*(t1)) = :l.~Ci' (5.50) 

or, in view of (5.41), 

* * 1/1 (t) = A0c1• i 
( 5. 51) 

fori = 1, •.• , N, where the c1 ~ 0, not all zero, as a consequence of 

v~(y) > 0. 

In light of these results one may just as well consider 

A N n 
H(~,x.u) = :l.o.L cifoi(x,u) + L :l.kfk(x,u) 

1 =1 k: 1 

along with the adjoint equations ~ 0 = 0 and 

• N af0; 
A = - Ao L c. ~x,u) r . 1 r 

1=1 

n af 
- L Ak ax-ix,u), 

k=l r 

r = 1, ... , n, and with transversality conditions 

A(t0 ) 1 T0 and A(t 1 ) 1 T1 • • 

(5.52) 

(5.53) 

In the case :A. 0 < 0 one may set Ao =- 1 as usual; in the abnormal 

case :l. 0 = 0 and the H-function becomes independent of the criteria 

integrands, a situation which is analogous to that in an optimal control 

problem. 

Similar results are now obtained for the programming problem. 
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Definition 5.2. Preference ootimal decision. let ~ be a com~lete 

nreordering of Y. A decision x* EX is oreference ontimal iff it results 

in a y* = q(x*) such that .v* is a least element for;:; on Y. o 

The following theorem deals with necessary conditions for a orefer-

ence optimal decision. In essence, the theorem is a corollary to 

Theorem 5.2. 

Theorem 5.3. let h(·) and q(·) have continuous first oartial deriv-

atives at x*, and let f(·) be differentiable at x*. let~ be a comolete 

preorderinq, continuous, weaklv monotone and of class C2 on P. If x* is 

a preference ootimal decision on X, then there exist vectors c emN, 

(A 0 ,>.) E TR1+m and 1.1 E 1Rk such that 

>. 0cvq(x*) + >.vf(x*) + ~.~vh(x*) = 0, 

f{x*) < 0, 

>.f(x*) = 0, 

h{x*) = 0, 

c > 0, 

(>.o,>.) ;;;. o, 

(>. 0 ,>.,1.1) "* 0. 

( 5. 54) 

Proof: let y = (g1, ••• ,gN) E P, and let z = (x,y) En x P. As a 

consequence of the assumptions concerning the preference relation ~. 

there exists on P C2-utility function~(·) with v~(y) > 0 Y yEP. One 

may thus formulate the problem in terms of z as 

minimize ~(z) subject to z E Z, 

where 

Z = {z E nxP: f(z) <: 0, h(z) = 0} (5.55) 
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with mappings 

f( •}: nxP -+ TRm and h ( ·}: nxP -+ TRk+N 

defined by 

f.(z) = f.(x}, j = l, ..• ,m 
J J 

h.{z} = J 
_ {h.(x}, j = l, •.. ,k 

J yj- gj{x}, j = k+l, •.• ,k+N. 
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{5.56} 

{5.57} 

This statement now is an ordinary, nonlinear programming problem with 

minimization as the objective. A necessary condition for a minimizing 

z* = {x*,y*} E Z is the Fritz John stationary point condition. 7 For such 

a z*, there then exists a 
- l+m+k+N A = (A 0 ,A,~,w) E TR 

such that 

A0VZ${z*} + AV f{z*} + {~,w}V h{z*) = 0, z z 
h(z*) = 0, f(z*) ~ 0, 

Af(z*} = 0, 

(A 0 ,A} ;;> 0, 

1 '* 0. 

In terms of x and y this condition becomes 

AV f(x*} + ~V h(x*} - wV g(x*} = 0, X X X 

AoVy~(y*) + W = 0. 

Suppression of the subscript x on vx along with 

w = - A 0v ~ (y*) = - A c, c > 0, y 0 

then yields the equivalent condition 

A0cvg(x*) + AVf(x*) + ~vh(x*) = o. 

(5.58} 

(5.59) 

(5.60) 

( 5. 61 ) 

The conclusion of the theorem follows by noting that if (A 0 ,A,~) = 0, 
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then x0 = 0, which would imply ~ = n, a contradiction to X * 1. • 

As is the case for the general nonlinear programming problem one 

may assure ~o > n by imposing constraint qualifications. 

Hitherto, the necessary conditions in part provided assurance that 

if a control or decision is preference optimal then there exists a 

vector c > n, c E mN such that a scalar combination of the criteria 

satisfies a maximum principle or a Fritz John condition. As was noted 

in the earlier example only v~(y) > 0 V y E P was used to deduce c > 0. 

As of yet no use has been made of the fact that v~(y) is normal to S(y) 

at y; this will impose an additional restriction on c. Without this 

restriction the previously derived conditions are no different from those 

for non-domination, or a special case thereof, Pareto optimality (see 

Yu 23 and Yu and Leitmann 24 . Before oroceeding to the compatibility 

condition which c must satisfy, a closer look at the influence of the 

vector c is warranted. 

Quite generally, let 

• • • N n 
H(x,x,u) = x0 L c.f .(x,u) + L xkfk(x,u), 

• 1 01 
1=1 k=l 

(5.62) 

where the ci are arbitrary constants. Consider any solution concept 

resulting in necessary conditions which involve a maximum principle 

stated in terms of the just given H-function. A control u*(·), satisfy­

ing necessary conditions, generally will depend on the param~ters ci' 

and this dependence will be induced on the adjoint variables, the solu­

tion to the state equations and the criterion functions. With a slight 

abuse of notation denote this dependence by 
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u*(c;•), A*(c;•), x*(c;•) and y*(c;•), with c e mN. 

The solution concepts themselves then differ only 1n the permissible 

values or range of values of the c1• For preference optimality with the 

particular preference relation on which the necessary conditions have 

been based and for Pareto-optimality it follows from the respective nec­

essary conditions that c belongs to the set 

c = {c e mN: c > Ol. 

Furthermore, in a strict sense all the quantities depend only on the 

relative ratios of the ci' since none of the results are altered if the 

H-function is divided by a non-zero constant, a fact which will be illus­

trated shortly. Any further restriction of the values of the ci due to 

necessary conditions depends on the optimality concept to be used. For 

preference optimality this additional selection process is embodied in 

the following lemma. 

Lemma 5.1. Assume that there is on P a preference relation~ which 

is a complete preordering, continuous, weakly monotone and of class C2 

on P. Let c* e C be such that u*(c*;•) e Jr is a preference optimal con­

trol with corresponding x*(c*;·) and y*(c*;·). Let y* = v*(c*;t1 ) and 

assume that S(y*) is a Cl-hypersurface in P. Then there exists a normal 

vector n(y*) to S(y*) at y*, which may be chosen to point into s+{_v*) 

and for any such normal vector one may choose 

c* = n(y*}. 

Proof: Due to the assumptions on ~there exists on P a utility 

function •(·) with v•(y) > 0 V y e P. Thus, v•(y*) > n and any vector 

n(y*) = kv.(y*), k > 0, is an appropriate normal vector. The rest 
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follows from the definition of c in the preceding theorem and from the 

fact that the H-function is insensitive to division by a non-zero 

constant. • 

Naturally there is a similar condition for the programming problem. 

The lemma is now illustrated in terms of the example above. As a 

result of the application of the maximum principle one had 

u*(c;t) = (4,tan- 1~) (5.64) 
1 

toqether with 

* 2c 1 
y 1 ( t ; 1) = -;:=::==:::: 

lc2 + c2 
1 2 

For any y E P a normal vector to S(y) at y is given by 

n(y) = (y2 + 1, y1 + 1) 

so that one has, in particular, 

2c2 2c1 
n ( y* ( c ; 1 ) ) = ( 1 + ' 1 + ) • 

lc2 + c2 lc2 + c2 
1 2 1 2 

The compatibility condition (Lemma 5.1) then requires 

(5.65) 

(5.66) 

(5 .67) 

(5.68) 

whose simultaneous solution yields c~ = c;. 

tion one has finally 

Corresponding to this condi-

y;(c*;l) = y;(c*;l) = 1:2 

resulting from a control 
1T 

u*(c*;t) = (4,4). 

(5.69) 

{5.70) 

There are some additional consequences due to the restriction of 
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the ci. Force C and u*(c;•) a subset of K(t 1) is generated, namely 

K*(c;t1 ) = {y ElRN: y = y*(c;t1), c E C}. (5.71) 

Lemma 5.2. Let c* e C be such that u*(c*;·) e '.f' is a preference 

optimal control and let~(·) be any utility function for~ on P. Fur­

thermore, let y*(c*;·) be the criterion response gener.ated by u*(c*;·). 

Then 

~(y*(c*;t 1 )) < ~(y*(c;t 1 )) 

for every c e C. 

(5.72) 

Proof: If u*(c*;·) is preference optimal andy*= y*(c*;t1 ) is a 

corresponding criterion response point, then ~(y*) < ~(y) V y e K(t1 ) 

and hence for y e K*(c;t1). • 

Thus it is necessary that l(·) considered as a function of c be 

minimized with respect to c. 

Recall now that maximization was the basic objective in the example 

above so that an equivalent result when applied to thP example yields: 

Maximize~(·) subject to c e C, where 

2c 1 2c 2 

l(c) = (1 + /2 2)(1 + /c2 + c2). 
cl + c2 1 2 

(5.73) 

A necessary condition for a maximum is 

- 2c 
~ ) 2 [( 2 + 2) 1/2 + 2{ + )J( ) I o ~c = -2-.....;;;,_2_).;2 c1 c2 c1 c2 c2 - c1 c=c* = • 

1 (c 1 + c2 
(5.74) 

* * with a similar condition for c2 , and c~ = c2 follows. It is clear from 

the present example that a normalization condition could have been 

included. In the present case this is expressed by the fact that~(·) 
c 

depends only on the ratio e = ~· With 0 < e < = an equivalent 
1 
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formulation then is 

~ 

~(e) = 
de 

2 [ll+e 2 + 2(l+e)](l-e)j = o, 
(l+e 2 )2 e=e* 

from which e* = 1 follows. 

W. Stadler 

(5.75) 

The last lemma may be used in a still different manner. As has 

already been indicated the controls u*(c;·), c E C, generate a subset 

K*(c;t 1 ) of K(t1 ). The dependence on the parameters ci may be suppressed 

in the description of this set; for the present example this results in 

K*(c;l) = {y E ffi 2 : y~ + y~ = 4, y > 0}. (5.76) 

One then has the programming problem: Maximize ~(y) subject to 

y E K*(c;l). This equality constraint may be substituted in~(·) 

directly, and a necessary condition is again 

d; 2 -I/2 2 1/2 2 
~(y2 } = (4-y } [4 + (4-y } - 2y - y ]I = o 
dy 2 2 2 2 * 

2 y2=y2 

( 5. 77} 

from which y; = 1:2 and consequently c7 = c; follow. 

6. SUFFICIENT CONDITIONS 

Briefly, if preference optimal control can be shown to exist, and 

if the solution to the compatibility conditions (lemma 5.1}, subject to 

a normalization constraint is unique, then the resultant control u*(c*;•} 

is preference optimal. In the example K(t 1) is compact, so that the 

existence theorem applies; c7 = c; is the unique solution of the 

compatibility relation, so that one may conclude that 

u*(t) = (4,f) 

defines a preference optimal control. Note that in this case no explicit 
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2 

0 

Fig. 4. Preference optimal 
criterion value and its 

indifference class S(l+/:2) 2 
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knowledge of the utility function 

was needed. Now if u1 happens to 

denote leather in lots of a hun-

dred hides, u2 denotes thread in 

ten-thousands of yards, machine­

use time x1 is in hundreds of 

hours, y1 is in hundreds of pairs 

of shoes and y2 denotes the number 

of leather coats in hundreds, then 

the answer to the initially posed 

physical problem is: Corresponding to a resource use of 400 hides and 

7850 yards of thread a machine-use time of 400 hours results in 141 coats 

and 141 pairs of shoes. Naturally it has been assumed for all quantities 

that they are perfectly divisible. The result is depicted in Figure 4. 

This situation is analogous to arguments in optimal control and 

programming, that is, if an optimal control is known to exist and the 

control satisfying a maximum principle is unique, then it is the optimal 

control. Recall that the necessary conditions involved no explicit 

knowledge of a utility function, only its existence along with suitable 

properties needed to be assured. Ideally, sufficient conditions should 

also be derived based only on hypotheses in terms of the preference rela­

tion. This possibility is treated at the end of this section, where an 

indication is given concerning a strengthening of Debreu's Theorem to 

yield a convex, C2 utility function. The first two theorems here are 

based on the explicit knowledge of a utility function, followed b.v a 
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general theorem which may be used to transform any sufficiency theorem 

in optimal control or programming into a corresponding one for preference 

optimality. 

In any new concept it is desirable to be able to tie the concept 

into existing theory and theorems to discover facts about the new con­

cept. The proof of the following theorem is patterned after results in 
4 Lee and Markus . Furthermore, it is convenient to drop the convention 

xn = t for this theorem. For the statement of the sufficiency theorem, 

introduce the mappings 

kO(·): A X [to,tl] + K0(open) cmN, k0 = (kOl'''''kON), 

h0(·): u X [to,tl] + H0(open) c mN, h0 = (hol•····hoN), (6.1) 

h(·): u X [tO,tl] + H(open) c mn, h = (hl ••••• hn), 

and an nxn matrix A(t) to define 

f 0 (x(t),t,u(t)) = kO(x(t),t) + hO(u(t),t) (6.2) 

and 

f(x,t,u) = A(t)x + h(u,t). (6.3) 

Theorem 6.1. Let u*(·) E T and let x*(·) be the corresponding 

augmented response. Let ~ be a preference relation on P which is a 

complete preordering of P. Assume: 

(i) S(y*) is such that n(y*) can be chosen to satisfy n(y*) > 0. 

(ii) A utility function~(·) is known for~ on P. 

(iii) The gradient v~(y*) > 0 and~(·) satisfies the ~ypotheses of 

Theorem 3.3. 

(iv) k0i(·), vk 0i(·), h0i(·), i = 1, ••• , N, along with A(·) and 

h(·) are continuous on their respective domains. 
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(v) The k0i(·), i = 1, ••• , N are convex in x for each fixed t 

in the finite interval [t0 ,t1]. 

(vi) eo = {x 0 }, a single point, and e1 fffin is a closed convex 

set. 

(vii) The control u*(·) satisfies the maximum principle 

- chO(u*(t),t) + A(t)h(u*(t),t) =max(- chO(u,t) + A(t)h(u,t)), 
uEU (6.4) 

where c > 0 and satisfies the compatibility condition 

c = n(y*)t, and where A(t} is any nontrivial solution of 

~(t) = cvkO(x*(t),t) - A(t)A(t) 

satisfying the transversality condition: 

A(t1 ) is an inward normal to e1 at the 

boundary point x*(t1). 

Then u*(·) is a preference optimal control. 

(6.5) 

Proof: Similar to the procedure in Lee and Markus 4 it is first 

shown that the inequality 

- c(y(t1 ) - y*) + A(t 1)(x(t1 ) - x*(t1 )) ~ 0 

holds. Consider the derivative 

d Jt[- cy(t) + 1,(t)x(t)] = 

- ckO(x(t),t) + cvkO(x*(t),t)x(t) -

chO(u(t),t) + A(t)h(u(t),t). 

(6.6) 

(f.-;' I 

+ Naturally, this condition is to be interpreted in the sense of 
Le11111a 5. 1 . 
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The integration of both sides with respect to t results in 

Jtl 
{[- ckD(x(t),t) + cvkD(x*(t),t))x(t)] + 

to 
(6.8) 

[- chO(u(t),t) + A(t)h(u(t),t)]}dt, 

since y(t 0 ) = n. The same expression evaluated at u*(·) and correspond-

·* ing augmented response x (·) is 

cy* + [A(t 1 )x*(t 1 ) - A(t 0 )x*(t0 )] = 

1:1 {[- ck'(x*(t),t) + c•k0(x*(t),t)x*(t)] + 

o [- chO(u*(t),t) + A(t)h(u*(t),t)]}dt. 

With x*(t0 ) = x(t0 ) = x0 , the difference (6.9) - (6.8) is given by 

- c[y*- y(t 1 )] + A(t 1 )[x*(t1 )- x(t 1 )] = 

{ckO(x(t),t) - ckO(x*(t),t)-Jtl 

to v(ckO(x*(t),t))(x(t) - x*(t))] + 

[- chO(u*(t),t) + A(t)h(u*(t),t) + 

chO(u(t),t) - A(t)h(u(t),t)]}dt. 

(6.9) 

(6.10) 

With c > 0, and k0 (·) convex in x for every fixed t, it follows from 

Theorem 2.1 that ck0 (·) is convex so that the first bracket in the 

integrand is greater than or equal to zero; the second bracket is 

greater than or equal to zero almost everywhere due to (vii). Hence, 

- c(y*- y(t 1 )) + A(t 1 )[x*(t 1 ) - x(t 1 )] ~ 0. (6.11) 

If el = m" or el = {xl}, then either A(t 1 ) = o, or x*(t1 ) - x(t 1 ) = 0, 

and 

cy* < cy(t 1 ) 

follows in either case. 

(6.12) 
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Now let n be a support hyperplane to e1 at x*(t 1). Since A*(t1) is 

an inward normal at x*(t 1), and since e1 is a closed convex set, 

A(t1 )(x - x*(t1 )) ~ 0 

for every x e el and one obtains again 

cy* <: cy(t1). 

From the compatibility condition follows 

c = n(y*) = av~(y*), 
where the scalar a > 0. Thus, 

and since a > n, 

(6.13) 

(6.14) 

(6.15) 

(6. 16) 

(6.17) 

But it follows from hyrothesis (iii) that there exists an F(·) such that 

~(·) = Fo~(·) is convex on P. Since F(•) is a strictly increasing func­

tion, the derivative F'{~) ~ 0 Y F, em. Hence, 

o ~ F'(~(y*))v~(y*)(y{t 1 ) - y*) = 

v~(y*)(y(t 1 ) - y*) < ~(y(t 1 )) - ~(y*), 
( 6. 18) 

and 

~(y*) ~ ~{y(t 1 ))- y* ~ y{t 1)- g(u*(·)) ~ g{u(·)) (6.19) 

for ever.v u(•) e 'f. Since u*{·) e T, the result is established. • 

Next, a similar approach is used for the programming problem; the 

theorem is based on results in Mangasarian 7. The notation f 1(·) simply 

denotes that subvector of a mapoing f(·), whose components are f.(·), 
1 

i E I, where I is an appropriate index set. 

Theorem 6.2. Let ~be a oreference relation on P which is a com­

plete preordering of P and let y* = g(x*) with x* E X. Assume: 
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(i) S(y*) is such that n(y*) can be chosen to satisfy n(y*) > 0. 

(ii) A utility function¢(·) is known for~ on P. 

(iii) The gradient ?¢(y*) > 0, and ¢(•) satisfies the hypotheses 

of Theorem 3.3. 

(iv) The criterion functions g.(·), 
1 

= 1, ... , N, are convex 

(v) 

with respect to X at x* E X. 
N . m k 

There exist vectors c E ~ , A E ffi , ~ Em such that 

cvg(x*) + A?f(x*) + uvh(x*) = 0, 

Af(x*) = 0, 

f(x*) .;;; 0, 

h(x*) = 0, 

A ;;;. 0, 

c > 0, 

(6.20) 

where c satisfies the compatibility condition c = n(y*}. 

(vi) Let N = {l, ... ,m}. With I= {i EN: fi(x*) = 0}, f 1(·) is 

differentiable and quasiconvex at x*. 

(vii) The equality constraints hi(·) are differentiable and both 

quasiconvex and quasiconcave at x*. 

Then x* is a preference optimal decision. 
-

Proof: Define f(·) = (f(·),h(·),-h(·)) and~= n- v with (n,v);;;. 0. 

Let\ = (A,n,v). Then the hypothesis (v) may be rewritten as 

cvg(x*) + ~vf(x*) = 0, 

'H(x*) = 0, 

f(x*) .;;; 0, 

~;;;. 0. 

(6 .21) 
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Let N = {l, ... ,m+2k} and let I= {i eN: fi(x*) = 0}, J = {1 eN: 
fi(x*) < 0} with I u J = N. From A~ 0, f(x*) ~ 0 and if(x*) = 0, it 

follows that 

(6.22) 

and consequently that AJ= 0. The following arguments hold for every 

x e X. The general inequality constraint can be written as 

f-(x) ~ 0 = i-(x*). 
I I 

In view of the hypotheses on fi(·) and h(·), the function fi(·) is 

quasiconvex at x*. Thus it follows from Theorem 2.3 that 

vfy(x*)(x - x*) ~ 0. 

-Furthermore, AI~ 0 implies 

i_vf_(x*)(x - x*) ~ 0 
I I 

and AJ = 0 implies 

The addition of the last two equations results in 

~vf(x*)(x - x*) ~ n. 
In view of 

cvg(x*) + Ivf(x*) = 0, 

this may also be written as 

cvg(x*)(x - x*) ~ 0 

or 

v(cg(x*))(x - x*) ~ n. 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

( 6. 27) 

(6.28) 

(6.29) 

(6.30) 

By hypothesis (iv), along with c > 0 and Theorem 2.1, cg(·) is convex at 

x*. It then follows from Theorem 2.2 that 
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n ~ ~(cg(x*))(x- x*) ~ cg(x) - cg(x*) (6.31) 

or 

cg(x*) ~ cg(x). (6.32) 

As in Theorem 6.1, the compatibility condition on cis used to obtain 

Q ~ ~~(y*)(y- y*), (6.33) 

and with F(·) and~(·) as before, 

0 ~ F'{~(y*))~~(y*){y- y*) = ~ljl(y*){y- y*) ~ ljl(y)- ljl(y*). (6.34) 

Since~(·) is also a utility function for~ on P, one has finally 

w{y) > ~(y*) ~ y ~ y* ~ g(x) ~ g(x*), and since x*e X, it follows that 

x*is preference optimal. • 

The last two theorems are illustrations of a general procedure by 

means of l'thich any sufficiency theorem in optimal control or programming 

may be used to construct a sufficiency theorem for preference optimality. 

The procedure is summarized in a programming context; naturally, it is 

equally applicable for the control problem. For this purpose, let the 

"standard programming problem" be Problem I with a criterion function 

G(·): X ~ffi replacing the mapping g(•) and with the objective: Minimize 

G(x) subject to x e X. Let Th be any sufficiency theorem for the "stand­

ard programming problem," that is, any theorem which guarantees that a 

decision x* satisfies G(x*) ~ G(x) V x E X. Then the hypotheses of Th, 

together with suitable assumptions for the preference relation on P, may 

be used to construct the following meta-sufficiency theorem, i.e., a 

theorem which is a prescription for the construction of sufficiency 

theorems for preference optimality. 

Theorem 6.3. Let ~be a preference relation on P which is a 
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complete preordering of P and let y* = g(x*) with x* e X. Assume: 

(i) It is known that there exists a differentiable utility 

function~(·) for~ on P such that~(·) is pseudo-convex with 

respect to Y at y* e Y and such that v~(y*) + 0. 

(ii) The indifference sets of~ are such that a normal vector 

n(y*) to S(y*) at y* is known, and has the same orientation 

as v~(y*). 

(iii) All the conditions of Th are satisfied with n(y*)g(•) 

replacing G(·). 

Then x* is a preference optimal decision. 

Proof: As a consequence of (iii), 

n(y*)g(x*) ~ n(y*)g(x) V x e X. 

From (ii) it follows that n(y*) = av~{y*), a > 0, with the result 

v~(y*}(y - y*) ;;;. o '1/ y e Y. 

But.since ~(·) is pseudo-convex at y*, this implies 

~(y*) ~ ~(y) '1/ y E Y. 

Consequently, 

g(x*) ~ g(x) V X E X, 

and since x* eX, x* is preference optimal. • 

The three fundamental influences in preference optimality are 

clearly apparent from this theorem, namely, the normal vectors n(y) 

characterizing the indifference surfaces, the functions g.(•) character-
1 

izing the attainable criteria set, and the utility function~(·) char-

acterizing preference. As has already been remarked, properly, all 

conditions concerning preference optimality should be stated only in 
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terms of the preference relation. In the preceding theorem this would 

essentially be brought about by conditions on ~guaranteeing the exist­

ence of an at least pseudo-convex utility function. ~lith the additional 

hypothesis of strong convexity of the preference relation, everywhere 

non-zero Gaussian curvature of the indifference surfaces and compactness, 

along with convexity of the attainable criteria set, Debreu's Theorem 

may be used in conjunction with a result, due to Aumann 25 and similar 

to Theorem 3.3, to assure the existence of a convex utility function~(·) 

for ~on compact subsets of P and hence on K(t1 ) or Y. This result, 

together with Theorem 5.3, allows one to construct sufficiency theorems 

which re~uire no explicit knowledge of a utility function. 

The possible use of the sufficient conditions may become clearer 

by means of the following simple example. It is cast in a programming 

framework, since a control example was given earlier. The geometry of 

the example is such that maximization is more suitable as the basic 

objective. 

To give an indication of the applicability of the present concept, 

the problem is stated in a biological context. Assume that two dif-

ferent species, 1 and 2, are capable of survival in a given area and 

that they consume the same type of food. Let x1 represent the average 

number of hours that each species has to spend on food foraging ::er day 

and x2 the average amount of time spent by each in the evasion of pred­

ators. Let q1 (x) and g2{x) be the number of the respectivE jpecies 

capable of survival under the given conditions x. Now a farmer may con-

trol the amount of food and the predators to some extent and he may 
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consider different combinations of these species more desirable than 

others, thus giving rise in a natural way to a preference relation over 

the space g = (g 1 ,g2 ). 

Let the preference relation be described in the following manner. 

With P = {y e R2: y >> 0} consider the family of hyperbolas y2 = ; 1 , 

a> 0, y = (y1 ,y2 ) e P. Let the indifference surfaces of the relation 

be the members of this family; that is, if z = (z 1 ,z2 ) is any point in P 
a 

and a is such that z may be written as z = (z 1 ,z-). then 
1 

Sa(Z) ~ {X E P: x2 = ~ } 
1 

is the indifference class of z. With 
-+ A a Sa(z) = {X E P: x2 ~ Xl} 

the statement 

V Z E P, X~ Z iff X E S!(z), 

(6.36) 

( 6. 37) 

along with an equivalent one for x ~ z, defines a monotone, continuous, 

and convex preference relation of class C2 which is a complete preorder­

ing of P. t In addition, it follows from Theorem 2.5 that any utility 

function on P will be quasiconcave, since the set {x e P: x ~ y} is 

convex for every y e P. 

As has been mentioned among the Assumptions, once an indifference 

surface of sufficient differentiability is known, one also has knowledge 

of a nonnal vector field to this surface. In order to apply the given 

t One should say here, of "at least" class C2 • 
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conditions a normal vector must be known for the necessity part and the 

existence of a suitable utility function must be assured for the suf­

ficient part. For every y E P, a> n, the following choice is made for 

these: 
a 

n(y) = (yrl) and :p(y) = yly2. (6.38) 

This takes care of the preference on P. 

With maximization as the basic objective, consider then the follow-

inq soecific nroblem: Obtain nreference ootimal decisions for 

q l (X ) ~ and g 2 (X ) = X l - X 2 (6.39) 

subject to the inequality constraints 

f 1 (x) = x2 - x1 < 0, f 2 (x) = x1 - 1 ~ 0, f 3 (x) = -x2 < 0. (6.40) 

The sets X and Y are defined by 

X = {X E JR2: f(x) < ()} (6,41) 

and 

y = g[X]. (6.42) 

These sets are sketched in Figure 5. 

g (.) 

---- ........ 

0 

Fiq. 5. Functional constraint set X, attainable criteria set Y, 
together with preference optimal decision and criterion value. 
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Solution: The solution consists of two parts, application of the 

necessary condition Theorem 5.3 to ob~ain a candidate (or candidates) and 

a check of sufficiency conditions to assure oreference optimality. 

Part I. With three inequality constraints, the necessary conditions 

embodied in Theorem 5.3 require 

However, f 1 (·) and f 3 (·) are strict inequalities for every x E m2 , hence 

never active, so that A1 = A3 = 0. An interior point of X cannot be a 

solution so that only the possibility with f 2 (·) active remains. With 

f 2 (·) as the active constraint, x1 = 1, A2 * 0 and 
l r:-- 2 ClvX2- C2 =- A2' 

(6.44) 

- .!. c 1-1- + c = () 
2 rx; 2 ' 

are all that remains of the necessary conditions. The solution of the 
' 1 cl system yields x2 = 4(c2 )2. 

To apply the compatibility condition, y is needed in terms of c: 

that is, 

(6.45) 

the above choice of normal, n(y) in terms of c becomes 
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n(c) (6.46) 

Thus, 

(6.47) 

with the result 
2 

c1 = 1:3' c2 = 1, (6.48) 

alo~g with x2 = t· Note that the specific values for the c1 are illu­

sory, since all the results remain unchanged with c1 = £!, c2 = 6, 
13 

0 > 0. 

Part II. 

Y* = ( 1 2) 13'3. 

1 Claim: x* = (1,3) is a preference optimal decision with 

Note first that~(·) is not concave. Essentially, this leaves two 

approaches, either to show that~(·) is pseudo-concave and to make 

implicit use of Theorem 6.3 or to show that~(·) satisfies the hypotheses 

of Theorem 6.2, and in particular, those which concern Theorem 3.3. 

The function~(·) is indeed pseudo-concave, since yeP, 

v~(y*)(y- y*) ~ 0 implies ~(y) ~ +(y*); i.e., y y ~ y*y* as long as 
* 1 2 1 2 

y 2 ~- (Y!)y 1 + 2y~. This is most easily seen from the fact that y;y; 
yl 

is the largest possible area of an inscribed rectangle. 

However, it may usually be quite difficult to show pseudo-concavity 

or concavity directly, so that it is instructive to illustrate the 

application of Theorem 6.2. The satisfaction of the hypotheses of 

Theorem 3.3 is of particular interest, since all other conditions are 
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obviously satisfied. Naturally, the conditions (i) - (v) of the theorem 

are modified to conform to the basic objective of maximization. 

(i) Since v~(y) = (y2,y1) >> 0 Y y e ?, ~(·) has neither a 

stationary nor a maximum point on P. 

(ii) The quadratic form Q(•) is given by 

Q(E;,E;) = (E; ,E; ) [~11 (y) + a(y)~~(y) ~12(y) + a(y)~1 (y)~2(y)] ( E;1) 
1 2 ~21(y) + a(y)~1(y)~2(y) ~22(y) + a(y)~~(y) E;2 

(6.49) 
with characteristic polynomial 

r (a) = a2 - aa(y)(y2 + y2) - (1 + 2a(y)y1y2), (6.50) Q 1 2 

where 

~1(y) = y2, ~2(y) = yl, ~12(y) = ~21(y)::: l, 

and ~11(y) = ~22(y) = 0 

have been used. A choice of 

1 a(y) =- --
2Y1Y2 

yields 

a = 0 
1 

y2 + y2 
a = _ 1 2 
2 2y1y2 

(6.51) 

(6.52) 

(6.53) 

assuring the negative semidefiniteness of Q(·) (by an exten-

sion of Theorem 2.7). It is possible to use Theorem 3.3 in a 

constructive manner, for with 

- F .. ( ~(y)) 
a (y) - F • ( ~ {y} } (6.54) 
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one may obtain the desired transformation F(·) from 

as 

F"(cp) + l_F'(cp) = 0 2cp 

F(cp) = ~ 1 ~ + d . 
2 2 

W. Stadler 

(6.55) 

(6.56) 

The d. are irrelevant and a concave utility function~(·) is 
1 

defined by 

w(y) = Focp(y) = ly1y2 • (6. 57) 

(iii) The matrix associated with Q(~.~) has rank 1, and [4> •• (y)] 
lJ 

has rank 2 for every y E P. 

( i v) Here 

r(a) = n2 - 1 

and 

r*(a) 2YlY2 
= - - a y2 + y2 

1 2 

so that 

D0 = 1, D1 = 0, D2 = -1; 

* D* = - 2y1y2 Do a l, 1 2 2' 
y + y 

1 2 

Since maximization is the objective, 

D 1 
G(t) = sup{k2(y)D~: cp(y) = t} = 2t < ~ 

for every fixed t E (E,B) = (0,~). 

(v} Let a minorant function y(·): [E,S) + m be defined by 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

y(t) = ~(~)' • (6.62) 
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An obvious choice for H(·) is H(t) = if. Then, 

G ( t) = ~t ;;. ~t ( 6. 63) 

follows. 

Hence, x* = (l,t) is a preference optimal decision with resultant 

criterion value y* = (;}.t). 

In conclusion then, if x1 and x2 are given in hours and y1 ,y2 in 

terms of hundreds of members of a species, the answer for the farmer 

would be: Allow the two species 1 hour for feeding, chase them about for 

another t of an hour, and as a result, approximately 58 of the first 

species and 67 of the second species will survive. 

7. A COMPARISON WITH OTHER OPTIMALITY CONCEPTS 

In this section, a brief comparison with other optimality concepts 

in vector-valued criteria problems is given. 

Instead of taking the preference relation as the primitive notion of 

the theory, one could have used utility as the primitive;t that is, one 

could have introduced a differentiable utility function to provide a one­

dimensional ordinal comparison of the criteria. This would change none 

of the results. It must be emphasized that in view of its nonuniqueness 

such a function does no more than to provide an ordering of the choices; 

t A primitive is a concept which requires no explanation in terms of 
other more basic concepts; that is. there are none which are more basic. 
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it does not assign numerical amounts to physical quantities. Thus, it is 

meaningless to compare, that is, to add or subtract, the numerical values 

of utility functions.t 

On the other hand, it is possible to introduce one-dimensional com­

parison functions of the criteria whose numerical values may have physical 

interpretation. For example, assume that two individuals, J1 and J2 , wish 

to travel together and that in one day they wish to get as far away from 

a given town 0 as possible. Because of their separate future destina­

tions, J 1 would prefer to travel due east and J 2 due north. In view of 

their desire to travel together they form a compromise concerning their 

destination at the end of the day in that J1 insists only on an eastern 

component of 

g1 (x) = x2 +cos x1 (7.1) 

in tens of miles, and J2 insists on a northern component of 

g2 (x) = 2x2 sin x1 (7.2) 

in tens of miles. Here, x1 E [0,~] is descriptive of their directional 

bias and x2 E [0,1] is representative of their food provision for the 

day. Note that x1 is not the polar angle e, and that x2 is not the food 

per day; these variables only describe the effect of these quantities on 

the components of the destination at the end of the day. For example, 

if their destination at the end of the day is to bey = (1 ,2), then this 

corresponds to x = (~,1). Thus, 

g.(·): X -+-lR, i = 1,2, 
1 

t Additive utility theory is a partial exception to this statement 8. 
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where X= {X E ffi2: x1 E [0,~]. x E [0,1]}. In view of their agreed upon 2 2 

restrictions concerning their common possible destinations y at the end 

of the day, this y must be within the set 
y 

y = {y E JR2; 0.,;;; y2 c;; 2yl' {yl - 1)2 + <f)2.,;;; 1}. {7.3) 

The maximum distance they can cover during that day is obtained by 

L E 

2 

0 2 

Fig. 6. The optimal compromise 
destination of J 1 and J 2. 

and let 

maximizing the objective function 

2 2 
Rog(x) = [ L g,(x)]l/2 (7.4) 

i=l 1 

subject to x E X, where R( ·): Y +lR, 

and where the value Rog(x) is the actual 

distance in tens of miles that they are 

capable of travelling that day. Thus, 

if Rog(x*) =max {Rog(x): x EX}, then 

y* = g(x*) is their optimal destination 

at the end of the day. 

More generally, let g(·): X+ Y 

.Yi = g1(xi) =min {gi(x): x eX}, 

Define regret functions R(·): Y + lR by 

=l, ... ,N. ( 7. 5) 

N 
R(y) = [ I G. - y )P]l/P, 

i = l 1 1 
(7.6) 

Then Theorem 5.3 applies as a necessary condition for the minimization of 

Rog{x) subject to x EX, as long as the gi(·) are sufficiently differen­

tiable. Additional detail concerning such regret functions R(·) and some 

of their properties may be found in Yu and Leitmann 1. Further treatment 
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of one-dimensional comparison functions with physical meaning, along 

with necessary conditions for their minimization are given by Salama and 

Gourishankar 2fi. 

When such one-dimensional comparison functions are used, the neces­

sary conditions as given here are altered only in that it generally is no 

longer possible to assert c > 0 in the maximum principle, and that, in 

particular, c* = 0 is a possibility. The major change in the sufficiency 

conditions concerns the assumptions which assure that inner products with 

the vector c* are convex functions, e.g., c*kO(·) and c*g(•) may no 

longer be convex functions, since c* > 0 need no longer be the case. A 

comparison of preference optimality with Pareto-optimality is given next. 

In the treatment of Pareto-optimality various equivalent definitions 

are in use. For convenience, the more common ones are included here as 

a lemma. 

Lemma 7.1. The following three statements concerning a mapping 

u*(·) E:r and a corresponding criterion vector g(u*(•)) imply each other: 

(i) For every u(•) E T such that g(u(•)) is comparable to 

g(u*(·)), g{u(•)) ~ g{u*(·)) • g{u(•)) = g(u*{·)). 

(ii) ~ u(•) E T such that g{u(·)) < g(u*(•)). 

(iii) For every u(·) ET, either g(u(·)) = g(u*(·)) or there exists 

at least one j E {l, ••. ,N} such that gj(u(•)) > gj(u*(·)). o 

The proof is simple and is omitted. Thus, a Pareto ootimal control 

u*{·) is nothing but a control which results in a minimal element 

y* E K{t 1) c P for the partial ordering given by the coordinatewise 

ordering of P. Clearly, then, any of the above statements may be taken 



Preference Optimality 187 

as the definition of Pareto optimality. 

Conditions are now given subject to which a preference optimal con­

trol is also Pareto-optimal. The conditions are given for the control 

problem; of course, they are equally applicable to the programming prob­

lem. 

Theorem 7.1. Let~ be monotone and a complete preordering of 

K(t1) cmN. Assume that u*(·) E Tis a preference optimal control. Then 

u*(·) is also a Pareto optimal control. 

Proof: Take (ii) of Lemma 7.1 as the definition of Pareto-optimal­

ity. Let u*(·) ET be preference optimal, that is, g(u*(•)) :$ g(u(·)) 

v u(•) E r. Assume that u*(·) is not Pareto-optimal; then there exists 

a u(•) E'J' such that g(u(•)) < g(u*(·)). But since~ is a monotone 

preference relation, this implies g(u(·)) ~ g(u*(·)), which is a contra­

diction to the preference optimality of u*(•). Hence u*(·) is Pareto­

optimal. • 

8. CONCLUSIONS AND SQr4E POSSIBLE GENERALIZATIONS 

An optimal concept for problems with a vector-valued criterion has 

been presented. It is based on ordering the criteria srace by means of 

a complete preordering ~. and on the subsequent definition of preference 

optimality in terms of a least element for~. The derivation of neces­

sary conditions involved assumptions on ~which guaranteed the existence 

of a C2-utility function$(·) for~; it was shown that a maximum princi­

ple involving a scalar combination cg(·} of the criteria was one such 

condition, another being a compatibility condition of the form 
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n(y*(c*;t1 )) = c*. It must again be emphasized that the necessary 

conditions may be applied without any explicit knowledge of a utility 

function. 

Sufficient conditions, however, may be based on the assured exist­

ence of a suitable utility function or its explicit knowledge. 

It would seem that the following generalization<; and refinements of 

the theory are desirable: 

(i) All theorems are stated with~ as a complete preodering. 

This was done to conform 1-lith the definition of preference 

optimality which was given in terms of least elements for a 

complete preordering. Some of the results are applicable 

for binary relations with less structure, as long as a state­

ment such as "least preferred" retains meaning. Thus the 

meaning of "least preferred" should be extended beyond 

minimal and least elements for partial orderings; furthermore, 

the required structure on ~should be eased, in particular, 

the differentiability assumption. Naturally, this should be 

accomplished in such a way that one may still derive most of 

the preceding conditions, especially the necessary conditions 

in terms of a maximum principle. 

(ii) The corresponding existence theorem should be broadened. 

(iii) Additional sufficient conditions which make no use of a 

utility function should be derived. 

(iv) A numerical algorithm for the calculation of the ci, which 

makes use only of the indifference curves, would be useful. 
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(v) Additional comparisons to other optimality concepts in multi­

criteria problems should be made. 
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PART I I 

APPLICATIONS OF PARETO-OPTIMALITY IN MECHANICS 

1. INTRODUCTION 

Vector-valued criteria have long been used in Economics and in 

business applications, along with game theory. However, little has been 

done along this line in Mechanics or for that matter in other engineering 

fields. The optimality concept which is to be used here is that of 

Pareto-optimality. 

The first application concerns the introduction of measuring devices 

into an optimally controlled system. Naturally, one would like to measure 

or observe the undisturbed system. This may be possible in theory, but 

it is not possible in practice. In any experiment or operation the 

interaction of system, instrumentation, and investigator is observed. 

Thus, any measurement constitutes a disturbance of the system. The 
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objective, then, is to minimize the disturbance to the system, while at 

the same time maintaining optimal control. Only one example is given 

here; several other examples may be found in Leitmann and Stadler 27 • 

The second set of applications deals with proposed 11 natural 11 shapes. 

The use of the word 11 natural 11 is prompted by the resemblance of some of 

the results to structural shapes found in nature (one needs a little 

imagination here). Specifically, when the purpose of the structure has 

been defined, that is, the loading which it is to support and the geo­

metric constraints to which it is to be subjected, then the optimal 

(natural) structure (defined in terms of shape, loading, and material 

parameters, etc.) to fulfill this purpose is one which results in a 

Pareto-optimal balance between the bulk of the structure and the total 

stored energy corresponding to this choice of shape and material para­

meters. Again, only a single simple example is given here; several other 

examples, along with general properties of such structures, may be found 

in Stadler 28. 

2. OPTIMAL PLACEMENT OF A MEASURING DEVICE 

Considered here is an optimally driven disc upon which is to be 

placed a measuring device, say to measure the instantaneous angular 

acceleration. The problem then is where to place the device so as to 

disturb the system 11 least • ., Essentially, two separate subproblems are 

worked. The first is an optimal control problem to obtain a control 

which strikes a Pareto balance between the two criteria, the other a 

programming problem to calculate a Pareto-optimal placement of the device. 
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In Leitmann and Stadler 27 an additional problem is considered: the 

choice between two different measuring devices, different in the sense 

that they disturb different parts of the system. 

2.1. The "Isolated System". A disc rotates with an angular speed zO 

about a fixed axis through its center 0. The moment of inertia of the 

disc about this axis is I. Its angular speed at any timet e [0,1] is 

Fig. 1. The "Isolated System". 

denoted by z(t), where z(•): [0,1] +ffi, 

The disc is to be brought to rest by 

a Lebesgue measurable torque 

u(·): [O,l]+ffi,with lul<ao, in such 

a manner that f~u2 (t)dt is a minimum. 

The optimal control problem is formu­

lated by incorporating the desired 

terminal state z(l) = 0 (rest) in the criterion by means of a weighting 

constant k.t (See Figure 1.) The objective then is to minimize 

g1(u(•)) = ~z2 (1) • tf1
u'(t)dt (2.1) 

0 

subject to Euler's second law (the law of angular momentum)tt 

i = ~. z(O) = zO 
I 

(2.2) 

with u unconstrained and with k > 0. The optimal control (linear equa­

tions with quadratic criterion 30 ) 

t In essence the use of a weighted sum of the criteria f 1u2(t)dt and 
z(l) already constitute a problem in Pareto-optimization. 0 29 

tt For a basic, well written discussion of Mechanics see Fox • 
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u(t) = - kzOI 
12 + k 
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(2.3) 

with corresponding solution z(•) of the state equation (2.2) defined by 

z(t) = 2zO [12 + k(l-t)], 
I + k 

and with criterion value 

(2.4) 

A k(zOJ)2 
gl(u(•)) = 2(12 + k) • (2.5) 

2.2. The "Disturbed" System. A measuring device of mass m, say an 

accelerometer, now is to be attached to the disc in such a manner that 

the system is disturbed as little as possible; that is, one wishes to 

come close to measuring the acceleration of the isolated system. Thus, 

the device is to be attached in such a way that both the criterion 

gl(u(·)), and in addition, the mean-square error between the speed z(t) 

of the isolated system and that of the disturbed system are optimized in 

the sense of Pareto-optimality. 

The disturbance to the system is characterized by allowing the moment 

of inertia to be a function x1(·): [0,1] +m of time. With angular speed 

x2(·): [0,1] +m, torque u1(·): [0,1] +m and rate of change of moment of 

inertia u2(·): [0,1] +m, the new vector-valued criteria problem may be 

formulated as: 

Obtain Pareto-optimal controls u*(·) fort 

f1 u (t) - x (t)u (t) 1 2 
g1(u(·)} = (kx2 (t) 1 x1{t} 2 + 2 u1(t))dt, 

0 

(2.6) 

t g1(u(•)) may be written in this form because the initial manifold 
consists of eb = {zO}. 
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(2.7) 

subject to 

The control constraint set U, and the initial and final moment of inertia 

x1(0) and x1(1) have been left unspecified so that a number of different 

possibilities may be considered; also, the state constraint x1(t) ~I 

V t e [0,1] is omitted for the moment. 

The application of necessary conditions for Pareto-optimality as 

given in Yu and Leitmann 24 quite generally requires an H-function 

( ) ( u1 - u2x2 1 2 1 A( )2 H A,X,U =- c1 kx2 X + ~1 ) - ~2(z t) - x2 + 
1 

( 2. 9) 

and adjoint equations 

(2.10) 

(2.11) 

In order to proceed any further some special cases need be considered. 

Only c1 , c2 > 0 will be considered here; c1 and c2 equal to zero were 

treated in Leitmann and Stadler 27. 

2.2.1. The Control Constraint Set U = R2. As before, the notation 

U =m2 simply means that arbitrary bounded and Lebesgue measurable controls 
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with values in m2 are to be considered. In view of this arbitrariness 

one must have 

~ = 0 =- c1kx2 - c u + ~- u (t) = c xl(t)(A.2(t)- c1kx2 (t)) aul xl 1 1 xl 1 
1 1 (2.12) 

and 

For convenience the argument t is omitted in the following manipulations. 

The substitution of equation (2.13) in the adjoint equation (2.10) yields 

(2.14) 

and the substitution of equation (2.12) into the adjoint equation (2.11) 

leads to 

. <k x1)' ) <A ) xl A = - + - \A - c kx - c z - x - c1kx 2-. 2 x~ x1 2 1 2 2 2 x1 
(2.15) 

Equation (2.13) together with its derivative and equation (2.14) result in 

(2.16) 

The comparison of equation (2.16) with (2.15) along with 

(2.17) 

then provides 

(2.18) 

If z0 = 0 there is nothing to show. Hence, assume zO ~ 0. Then 

i(t) ~ 0 V t e [0,1] and equation (2.14) may be integrated to obtain 
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( ) _ ). 1 (fl)~( ) 
A- 1 t - --z t 

zo 

along with 

A. 1(fl)x 1(t) = zO(A. 2(t)- c1ki(t)) 

from expression (2.13). The corresponding control is 

W. Stadler 

(2.19) 

(2.20) 

u1(t) = : 1 ~~) • (2.21) 
1 

These last three conditions must be satisfied no matter what the values 

of x1 (n) and x1(1) are. Furthermore, since x2 (1) is arbitrary, A. 2 (1) = 0 

is necessary. Next, the possible combinations of initial and final 

moment of inertia are considered. 

Case 1. x1 (fl) arbitrary, x1(1) fixed or arbitrary. Since x1 (0) is 

arbitrary, A1(0) = 0 ~ 0 = A. 2 (t)- c1kz(t) ~ A2(1) = c1kz(l) = 

c kzO( 12 ) = 0 iff zO = 0. 
1 J2 + k 

Case 2. x1 (0) = v0 , x1 (1) arbitrary. Since x1(1) is arbitrary, 

A- 1(1) = O ~ A1(1) = A- 1(0)( 12 ) = 0 iff A1(0) = 0 in view of J2 * 0. 
J2 + k 

The rest then follows as in Case 1. 

Case 3. x1 (0) = v0 , x1 (1) = v1 • This case was not considered in 

Leitmann and Stadler 27 • Since x1(0), x1(1) are given, A. 1(0) and A. 1(1) 

are abitrary. With 

A (0) 
u (t) = - 1-

1 c zO 
1 

{2.22) 

{2.23) 
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to obtain 

1 >.1 (0) 
x1(t) = ~ 0 t + v0z0]. (2.24) 

z(t) c1z 

The constant >. 1(0) now is adjusted to satisfy x1(1) = v1 , resulting in 

c (z0)2 
>. 1 (0) = i [v 1I2 - v0(I 2 + k)]. (2.25) 

I + k 

The remaining condition to be satisfied is equation (2.20) evaluated at 

t = 1. With >. 2(1) = 0 this is possible only if v0 and v1 are related by 

12 v~ + k v = ----=--- __:.. __ 
o 12 + k vl 

(2.26) 

Thus, no solution exists for arbitrarily specified initial and final 

moments of inertia. However, if one chooses them as related by equation 

(2.26} and requires that v1 ~I, and that k ~ v11, then the control 
2 kJ2 zO v1 - J2 

u*(t) = ~(- J2 + k '[12 + k(l-t)]2) 

results in 
2 

* J2 V1 + k(l-t) 
xl(t) = ~ 12 + k(l-t) 

with x7(t) ~IV t e [0,1], and 

x;(t) = z(t). 

Furthermore, this control is Pareto-optimal since it results in 

g2(u*(·)) = 0, the absolute minimum of g2(u(·)}. 

(2.27) 

(2.28) 

(2.29) 

In conclusion, then, there generally does not exist a control u*(·}, 

with u e m2, unless zO = 0. However, if one allows for a movable device 

whose initial and final position are implicitly restricted by (2.26} above, 
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then one may achieve zero error by suitably moving the device, and by 

using an external torque u*(·) which is related to u(·) by 

* I ~ u1 (t) = y-u(t). 
1 

(2.30) 

Note that v1 = I • v0 = I • x~(t) = I; that is, placing the device at the 

center of the disc causes no disturbance to the system, but in most 

cases, neither does it measure anything. 

2.2.2. The Control Constraint Set U =ffil. The device is now placed 

on the disc at an arbitrary but fixed location, a more realistic situa­

tion, since a measuring device usually is not moved about during an 

experiment. In this case one might just as well consider a problem with 

an arbitrary, Lebesgue measurable and bounded control. The problem is: 

Obtain Pareto-optimal control u*(·) for 

g1(u(•)} = J1(kx(t)u!t) + ~u2 (t))dt 
0 

1 

g2(u(·)) = ~ (z(t)- x(t))2dt 
0 

subject to 

x = ~ with x(O) = zO. v 

(2.31) 

(2.32) 

Here v = I + mr2 , where r is the distance of the device from 0. The 

H-function is 

H(A,x,u) =- c 1 (kx~ + ~u2) - ~c2 (z(t) - x)2 +A~ (2.33) 

with corresponding adjoint equation 
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~ = elk~- c2(z(t) - x). 

The condition 

!!:!. = 0 = - c kxl - c u + xl au 1 v 1 v 

results in 

1 u(t) = c1v(X(t) - c1kx(t)). 

With this u(·) the state equation becomes 

199 

( 2. 34) 

(2.35) 

(2.36) 

( 2. 37) 

Differentiation of this equation and the subsequent substitution of the 

adjoint equation yields 

c2 n2- -­- c y2 • 
1 

With X(l) = 0 and x(O) = z0 , the solution x*(·) is defined by 

x*(t) = (a - kx*>sinh nt + z(t) 
V2 n cosh n 

corresponding to a control u*(•) which satisfies 

where 

u*(t) = _ av + (av _ kx*)cosh nt, 
v cosh n 

x* = x*(l) = v2a tanh n + n(z0 - a) and a= kzo 
v2n + k tanh n I2 + k • 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

To confirm Pareto-optimality one may reason as follows: This is the 

unique optimal control for the scalar criterion 

(2.42) 
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hus, J(u(·)) - J(u*(·)) > 0 for every admissible u(·), so that at least 

one t.gi{u(·)} = gi{u(·))- gi(u*(·)} > 0 for every such control.t 

The corresponding criterion values are 

g (u*(•)) 
2 

(2.43) 

Recall that the value of the parameter n depends on the placement of the 

device and on the emphasis which is to be placed on the criteria. With 

this in mind, an additional problem may now be formulated to determine 

the "best" placement of the device. 

2.3. The "Best" Constant Placement. In the following multicriteria 

programming problem let x1 = n, x2 = x* = x*(l) and let the range of 

placement of the device be given by d ~ r ~ e with corresponding bounds 

of moment of inertia v0 ~ v ~ v1 • For a weighting c of the criteria and 

with 

(2.44) 

the functional constraint set is given by 

X = {X E m2: f(x) ~ {2.45) 

t The same argument was given by Da Cunha and Polak 31 • 
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Define the mappings 91(·): X +ffi, i = 1,2, by 

g1(x) = g1(u*(·)) and g2 (x) = g2 (u*(·)). 

201 

(2.46) 

One then has a programming problem of the form: Obtain Pareto-optimal 

decisions x* = (x;,x~) for 

(2.47) 

In general the Pareto-optimal decisions will again be generated by 

the weighting parameter c. As before, if the problem has a unique solu­

tion for a fixed c, then Pareto-optimality follows. To simplify matters, 

choose k = 1, a= 1, zO = 1, and consider an equal weighting of the 

criteria with c1 = c2 = 1. The equality constraint may be substituted 

into the corresponding scalar combinations of the criteria to obtain a 

function of x1 only, defined by 

(2.48) 

This is a strictly decreasing function of x with unique minimum obtained 

* l for the largest value, namely x1 = v;· 
Finally, the originally posed problem may be answered: The addi­

tional moment of inertia due to the device is to have its smallest value, 

or the device is to be placed as close as possible to the center of the 

disc, an intuitively expected answer. 

3. NATURAL STRUCTURAL SHAPES 

Optimal structural design is an old science, for certainly the 

circular shape of the wheel is "optimal" among all polygonal shapes which 

could be mounted on the axles of a cart; so much so that the word 11 Wheel 11 
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has come to be synonymous with "circular shape." In ship design a 

certain amount of ootimality has been achieved by the successive elimina­

tion of bad designs over thousands of years, the amazing part being that 

the basic shape has been around for such a long time. Currently one 

minimizes deflections, stresses, cost and a multitude of other criteria. 

In each case the designer must decide what is to be his criterion, his 

choice usually being based on experience or on a management decision. In 

this section a structural design criterion is proposed with resulting 

structures which exhibit a number of desirable characteristics. That is, 

the criterion is definitive for a class of structures with properties 

which should be attractive under a multitude of circumstances. In par­

ticular, it is assumed that a structure is to be designed with at least 

some bro~d purpose in mind and that the structure and its purpose can be 

defined in terms of a collection of parameters. The objective then is to 

devise a criterion which allows one to choose the parameters in an optimal 

manner. The proposed general theory is treated in detail in Stadler 28, 

which also includes several additional examples of the design of so-called 

natural structures. Here the treatment of the subject is purposely kept 

simple so as to make it accessible to a reader who has little or no back­

ground in structural mechanics. It is useful to begin with a fairly 

general notion of what comprises a structure. 

3. 1. Body and Structure. According to the evidence of our senses 

a body occupies a portion of space, it consists of matter, it has some­

thing which provides a resistance to moving it, it is cohesive, and 

finally, it has shape. Every construction .of a mathematical model from a 



Preference Optimality 203 

physical system involves 

the translation of the 

physical concepts into 

mathematical notions.t 

In the case of a body, 

rather than dealing with 

the physical body K one 

~ usually deals with it in 

terms of a subset fB of tR3; 
Fig. 2. The various configurations 

of the body K. one accomplishes this 

change of thought basis by assuming that there exists a diffeomorphism 

x(·): K +~,which maps the physical body K onto a subset SoflR3 • Such 

a mapping is also called a configuration of the body K. All properties 

of the body are then defined in terms of its image(/!; in lR 3 under the map­

ping x(·). In the treatment of static problems it is usual to take a 

particular configuration K(•) as a reference configuration with K(K) = 000 • 

A deformation of the body then is a diffeomorphism x(·): 030 +(/j, In the 

remainder (}30 will be called the reference (unloaded) shape of the body 

and Sthe deformed (as a result of "loading" the body) shape. The first 

property with which one usually endows the body K or any part P of it is 

its mass. This is done in terms of Pc (/j as 

m(~) = Jpp(x)dv(x), 

t It is philosophically interesting to contemplate this as a mapping 
from one kind of thought to another kind of thought. 
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where p(•): ~+m+ is the mass density per unit volume for the shape ~t 

and where ~= x(P) is understood. The function v(·): ffi3 +R+ stands for 

Lebesgue measure on m3 • The various configurations of the body are 

shown in Figure 2. 

Mathematically, sets which are diffeomorphic to one another are 

indistinguishable locally; naturally, their global appearance may be 

different. The assumption here is that there always exists a configura­

tion which provides an accurate image of the body. With this in mind OB 

may be taken as representative of the shape of the body and of the region 

in space which the body occupies. The mass characterizes the body's 

resistance to motion. The remaining properties of the body are assumed 

to be completely characterized by a scalar function E(•): ~ x~ +ffi 

called the specific stored energy per unit volume. ~ is a parameter 

space; it is purposely left unspecified, for it may consist of function 

classes, subsets of somemn, etc. However, for any particular problem 

it is assumed to have been specified. In terms of E(•), the total stored 

energy of K in the shape ~is 

U(~) = i E(~,x)dv(x), 
d3 

of course with a similar expression for each part P of K. 

A little needs to be said about forces. Generally one uses "forces" 

to describe the unknown causes of certain effects. Two major classifica­

tions occur, contact forces and body forces. In particular, a distributed 

t It is implicit in this statement that the density depends on the 
configuration. 
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contact force is representative of the effect that a part of the body has 

on an adjacent part P of the body. Let) be that part of the surface 

a~ of~ which is in contact with adjacent parts of the body (that is, 

x- 1 (a~) is in contact), and let n(•):J' +(the un1t sphere inm3) be the 

unit outward normal on J. Then the resultant contact force on the part P 

due to the adjacent parts is 

fc(~) = t t(x,n(x))dJ, 

where t(•,n(·)): J +lR3 is a suitable vector field and t(x,n(x)) is called 

the stress vector at x eJ. Naturally, this expression also describes the 

distributed contact (contact over a non-zero part of the surface) force 

between two bodies; it does not describe a concentrated force. 

A resultant external body force is similarly defined by 

fb(~) = J b(x)dv(x), 
~ 

where b(•): ~ +JR3 is the density per unit volume of the external body 

force. The word "external" refers to the fact that no contact is required 

for the force to act, the word "body" refers to the fact that it acts on 

each and every part of the body. 

When a body is designed with a particular purpose in mind, then the 

result is called a structure. 

Definition 3.1.1. Structure. Let the following be specified: 

Sl. The parameter space~. the specific stored energy E(•), the 

reference shape ~0 and the mass density p(•) in the shape ~0 ; 

S2. The body forces and the contact forces; 
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S3. A constitutive relation between the forces and the deformation; 

S4. Restrictions on the kinds of possible deformations and possible 

geometric constraints; 

SS. Equations which are definitive for the equilibrium (static, 

dynamic, thermal, etc.) of the body. 

A particular choice for each definitive entity (parameters, equa­

tions, etc.) results in a collectionS= {Sl, •.• ,SS}. Sis called a 

structure. When some entities are allowed to vary within specified sets 

then this variation generates a subclass {S} of structures. o 

In dealing with structures one is usually confronted with the ques­

tions: How much of a "load" can it support and what is the resulting 

deformation of the structure? The deformation can be treated in terms of 

the relative displacement of points a E ~0 -- the concept involves only 

geometry. To free the results from the influence of the particular shape 

of a structure, the concept of strain, an elongation per unit length, is 

introduced as a measure of the deformation. 

In order to deal with distributed contact forces and in particular 

with the interaction forces between parts of the body, the concept of 

stress or a force per unit area is introduced. The particular form of 

the expression for the stress at a point in the body is derived from 

equilibrium considerations of a nearby part of the body. 

Obviously, the interaction of force and deformation depends on the 

material, and one classifies ideal materials by constitutive relations, 

that is, equations which specify the stress as a function of the deforma­

tion. 
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Finally, one defines a boundary value problem in terms of the given 

forces, force or displacement boundary conditions and the requirement 

that the structure be in equilibrium. A detailed discussion of these 

concepts would lead too far; in summary then one needs to deal with: 

(i) Kinematics. These involve the deformation x(·), its gradient 

F(·) and the concept of strain. 

(ii) Kinetics. These involve the forces, moments, and their 

equipollence with a tensor field T( ·): f!!>-+ 1R3, where T(x) is 

called the stress tensor at x E~. 

(iii) Constitutive Relations. The ultimate purpose of constitutive 

relations is to provide a link between the deformation and 

the forces and moments which are applied to the body. A 

simple such relation consists of the specification: For a 

suitable selection of the reference configuration, 

F(a)F(a)T =I, the identity matrix, for every a e~0 • In 

other words, with a suitable choice of reference configuration 

the only possible deformation of the body is one which con­

sists of a rotation about a point -- the body is a "rigid 

body." 

(iv) Finally, a structure is in static equilibrium if the summation 

of the external forces (contact and body forces) and of the 

external moments on the body vanishes and if T(·} satisfies 

the equation 

div T(x} + p(x)b(x} = 0 (3.1} 

in the interior of tl3 with specified conditions on aU3. 
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A large part of the preceding discussion is based on the fundamental 

work by Truesdell and Noll 32 • The remainder of the discussion fs best 

formulated in terms of the particular example to be treated. 

3.2. The Bar as a Natural Structure. The involved structure is an 

11 axially loaded bar ... Such structures appear, for example, as members in 

bridges or in building trusses. The definitive assumptions for such a 

structure are listed first, along with some corresponding illustrations. 

Definition 3.2.1. Bar. A bar is a cylindrical three-dimensional 

solid body which is characterized by 

Fig. 3. A bar. 

a set of equations and functions hav­

ing the parameter of a specified curve 

as its only independent variable. o 

For a general theory of rods and bars, see Antman 33 ; for simple 

axial extension members, see any basic text on the strength of materia)s. 

Next, the definitive assumptions are stated. 

Al. The curve in the Definition 3.2.1 is a straight line. 

A2. Contact forces are applied 

only to the ends of the 

bar; there may be external 

body forces. 

p 

Fig. 4. A loaded bar. 

p 

A3. The deformation x(·) is sufficiently small so that the integral 

of any quantity+(·) over~ may be replaced by the integral of 

the same quantity over S 0 • (For more detail, see Fox 29 .) 

A4. The total loading (body and contact forces) is such that it 

gives rise only to a uniform normal stress-distribution over 
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each cross-section of the bar; 
p 

that is, for example, with a unit 

outward norma 1 n on J 
Fig. 5. The internal resultant. 

Qi. = - J T(a)ndJ = - T(a)An, 
'./' (3. 2) 

if n is taken as positive to the right and if A is the total 

cross-sectional area. Thus, the stress tensor T(•) consists of 

a single component T(·): [O,L] +ffi, for a bar of length L. 

AS. The specific stored energy per unit volume is defined by 

where E is the elastic modulus and where y(•): [O,L] +ffi, 

defined by 

y(a) = x(a) - a, 

(3.3) 

(3.4) 

is the displacement of a point a e ~o. In addition, the stress 

at a is related to a(•) by 

T(a) = d~h) (a) = E*"(a). 
da 

(3.5) 

This particular constitutive relation is called Hooke's law. 

A larger class of materials with such a relation between the 

specific stored energy and the stress tensor T(·) is the class 

of hyperelastic materials, e.g., see Truesdell and Noll 32 . 

The previous assumptions are given for bars with constant cross­

sections. They encompass what is usually called "engineering theory." 
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J(a) J(a+y(a)) 

~~----" 
- a-l 

Fig. 6. Plane sec­
tions remain plane. 

be made. 

W. Stadler 

Implicit in them is the restriction on the 

deformation that "plane sections remain 

plane"; that is, a cross-section !(a) at a 

in the undeformed shape is displaced to a 

parallel section /(a+y(a)) in the deformed 

shape. One additional assumption will 

A6. Variable cross-sections are permissible, that is, the cross-sec­

tional area may be a function A(·): [O,L] ~m. 
+ 

The adequacy of the assumptions in representing the actual physical 

phenomenon will not be touched upon; the emphasis here is on the concep­

tual results rather than on physically quantitative ones. Some compari­

sons of the formulation of the same type of problem within the linear the­

ory of elasticity may be found in Sokolnikoff 34 • Variable cross-sections 

will be of particular interest, since the objective in the example shall 

be to find among all possible variations in the area A(·) that one which 

is "optimal" in a yet to be defined sense. But consider first the fol-

lowing intuitive argument. 

A bar is built in at the 

left end and has a constant 

cross-section, say A(a) = A 

V a E [O,L]. The bar is load-

.ed only by a constant force P 

at the right end. For static 

p 

Fig. 7. A built in bar. 

equilibrium the summation of the forces on any part of the bar must be 
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zero, that is, 

tR.= P • T(a) = f. . 
A 

(3.6) 

In view of A5 this is related to the displacement by 

~a) • tT(a) • ~A • y(a) = f)r;d< • ~: • (3.7) 

since y(O) = 0. The total stored energy due to the displacement y(•) is 

11 _ 1 JL f_ 2 _ ! P2L 
~(~)- 2fA O(EA) d~- 2 AE . (3.8) 

Now compare two bars ~1 and ®2 , both built in at a = 0, of length L, and 

loaded by an axial load P with A and E not specified. 

(1) Assume that A2 > A1 and that E1 = E2 =E. It follows that 

y (a) < y (a) V a e [O,L] (3.9) 
2 1 

and 

(3.10) 

Furthennore, 

ll(O?>) <U(15). (3.11) 
2 1 

(2) A similar conclusion follows with E1 < E2 and with A1 = A2 = A. 

(3) The approach may be reversed, that is, one may start with the 

assumption 

U ( ffJ ) < U( S ) , 
2 1 

(3. 12) 

and note that it implies (AE) 1 < (AE) 2 and that hence, if E1 < E2 , 

one again obtains 

(3.13) 

and 
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(3.14) 

since~<~< 1. 
A2 E2 

Thus, if "best" design consisted of making the stresses and the dis­

placements in the bar as small as possible, and if all the parameters ex­

cept A and E were fixed with a ~A~ B and o ~ E ~ y, then an optimal 

choice would obviously be A = B and E = y. Note that these decisions 

would also result in a minimum of the total stored energy. Coloquially 

then, one might call the bar S2 with stored energy U(~2 ) stronger than 

the bar 031 • 

All bars with built in left ends are a subclass of all structures. 

Any member of this subclass may be specified as a seven-tuple 8 = {E,p,y, 

A,L,b,P}, with the subclass denoted by {8}. Clearly, some of the para­

meters in {8} may be functions of the independent variable a, or possibly 

of each other if some additional constraints are imposed. Naturally, any 

of the parameters could be specified as fixed in a given problem, with 

the remaining ones used as "controls" to find a "best" suited one in a 

given subclass. 

Definition 3.2.2. Strength of a structure. Let {S} be a given sub­

class of structures all of whose members are in static equilibrium. Let 

s1,s2 E {S}. Then the structure s1 is stronger than the structure s2 iff 

the corresponding stored energies and reference shapes are related by 

lL (dj ) < WU3 ) . o 
01 02 

Generally, a "strongest" structure cannot be obtained unless the 

problem is suitably restricted; e.g., up to a point it may be possible to 



Preference Optimality 213 

make a structure stronger by assigning more bulk. However, the addition 

of bulk usually changes only the size of the structure, not its outline; 

i.e., one may have a ten-foot diameter sphere or a twenty-foot diameter 

sphere. Thus, one might expect mass to play a crucial role in the opti­

mal design (an optimal choice of the variable parameters) of a structure. 

In the following, only structures belonging to a given subclass are 

to be compared. It is assumed that in the final stage of defining a 

structure the statements Sl - SS have been reduced to a collection of n 

parameters. Some of these will be given a priori, some fixed by necessity 

or choice, say a total cf k of them. Let the remaining n-k parameters be 

designated as controls ui(·): Qi ~~. i = l, .•• ,n-k, where the Qi are 

suitably chosen domains. An optimal structure is then defined in terms 

of these controls for the criteria which are given next. For simplicity 

the definition given here is restricted to "one-dimensional" structures, 

i.e., the controls are functions of a common single independent variable, 

with only small deformations to be considered. let 

g1(u(·)) = f p(a)dv(a) and g2 (u(·)) = 1 E(a)dv(a), {3.15) 
tf.JO U!JO 

where the remaining variables in the specific stored energy have been 

suppressed. t It is assumed that the class t of admissible controls is 

non-empty. 

Definition 3.2.3. Natural structure. Assume that {S} is a subclass 

of structures all of whose members are in static equilibrium. let 

t Normally these integrations should be carried out overiB; f/J0 is 
used here as a consequence of Assumption A3. For a discussion of the 
meaning of "small deformations" see reference 29. 
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U(•) E J be the COllective expression for those parameters which are to 

be used as controls. Then s* E {S} is a natural structure iff u*(·) e1r 

is a Pareto-optimal control for g1 (u(•)) and g2 (u(•)) with both referred 

to {S}. The corresponding shape 03~is a natural shape. D 

3.3. The Stalactite. Consider an axially loaded bar which is built 

L 

in at the top end and loaded by its own 

weight and a constant load Q at the free end. 

The length L, the density p and the modulus 

E are assumed to be given constants. The 

loading on part I due to the weight of part 

I I and Q is 

IR.(a) = Q + pg J~A(t;)dt;, (3.16) 

Q that is, the cross-sectional area is taken 

Fig. 8. A bar load- to be a function A(•): [O,L] ~~. Quite 
ed by its own weight. 

generally, in view of the fact that the cri­

teria g (u(·)) and g (u(·)) are non-commensurate, it is convenient to 
1 2 

deal with non-dimensional quantities throughout. Towards this purpose 

introduce 

a t = -L' 
X (t) = li!hl w = ~ 

1 L ' p' 
u(t) = A(tl) 

L2 , 

where P is some arbitrary constant force. 

(3.17) 

One then has a standard problem of Type II with Pareto-optimality 

as the optimality concept. In the present context the problem may be 
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stated as: Obtain the natural shape ta: for the system characterized by 

1 

g1(u(•)) = J u(~)d~ and 
0 

J lx~(~) g2 (u(·)) = u(~) d~ (3.18) 

subject to 

• ~ p 
xl = k~'tl' xl (0) = 0, kl = L2E' 

x2 =- k2u, x2(0) = w, k2 = ~· 

The H-function for this problem is 

2 

0 

x2 x2 
H(>.,x,u) = -c1u - c2u + >. 1k(jj- >. 2k2u, 

with adjoint equations 

(3.19) 

(3.20) 

(3.21) 

The transversality conditions yield >. 2 (0) = 0, and >. 1 (1) = 0, so that 
aH >. 1 (t) = 0. From au= 0 it follows that 

* fc2x2(t) 
u (t) = (3.22) 

IA2 (t)k2 + c1 

The use of 

~ 2 (t) = 2~1c1 + k2>. 2(t), 

or, upon integration thereof, 

fk2>.2(t) + cl = k2~t + ~· 

results in 

(3.23) 

(3.24) 

(3.25) 
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The substitution of u*(t) in the state equations (3.19) yields 

and 

(3.27) 

for the displacement, corresponding to an area distribution 

*< ) c2k2 + r'c 1c2 u t = w 2 • 
( ~k2t + /Cl) 

(3.28) 

If a circular cross-section with non-dimensional radius e(t) = r(tl)/L is 

assumed, then one obtains 

e*(t) = ]__ /w(k2c2 + /CiC2) 
rn k2rt;"t + IS (3.29) 

Remark 3.1. Appropriately one should now check sufficient conditions 

Fig. 9. Stalactites. 

to establish Pareto-optimality of the 

control (3.28). It seems more appro-

priate here to provide a comparison 

with another "optimal" design, since 

industrial applications will general­

ly be more concerned with simply ob-

taining a "better" design rather 

than the elusive assured "best". 

The functional form of the ra-

dius makes clear the choice of the 

title "stalactite". 
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3.4. A Comparison with an Optimal Design. Another concept of an 

optimal design is a structure with a constant stress-distribution through­

out the structure, the implication being that one makes full use of all 

parts of the structure in carrying the load. This design has the disad­

vantage that the yields simultaneously at every point, but it usually 

provides a minimum weight design. 

For comparison, consider then a bar subjected to the same loading 

as the stalactite, but let the design criterion be the attainment of a 

constant, nondimensional stress Tat each section; denote all quantities 

concerned with the constant stress design by affixing an overbar to the 

symbols. Then 

_ x2{t) 1 J1_ _ 
T{t) = U{t) = U{t)(w + kz tU{~)d~] = T = COnSt. {3.30) 

Consequently, 

~t) + ~{t) = 0 (3.31) 

and 

u{t) = ~x~l-t). 
T T 

(3.32) 

This results in a loading 

{3.33) 

and a deformation 

(3.34) 

A comparison of the two designs will first be made for a maximum allowable 
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stress. Assume that the maximum allowable stress for the suspended bar 

is ~. The maximum nondimensional stress for the natural structure occurs 

at the free end; hence, 

r*(l) = x;(l) = -1 (k c + lc1c2) = .f 
u*(l) c2 2 2 

and consequently, 

g2 (u*(·)) = wi, 

x7(1) = ~1 (2-T- k2 ). 

For the constant stress structure one has 
w k2 

g1 (u(·)) = k
2
(exP'"i'-l), 

w.f 2 k2 
g (u( ·)) = -(exJl"'"7 - 1), 

2 k2 T 

xl(l) = kl-r. 

As one might have expected 

gl(u(·)) < gl(u*(·)). 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

There is, however, a price to pay in terms of the amount of resulting de­

formation. This is evidenced in that 

g2(u*(·)) < g2 (u(·)), (3.43) 

i.e., the natural structure is stronger. Furthermore, 

x;(l) < x1(1), (3.44) 

so that for the same maxfmum allowable stress, the maximum extension of 

the natural structure is less than that of the constant stress structure. 
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As a final comparison, let the maximum allowable extension of the 

bar be specified as 6. For the natural structure this requires 

x*(l) = ~k c + 2;c-t) = 6 
1 2c2 2 2 1 2 

and a bulk 

to sustain it. For the constant stress structure 

x1(1) = k1:r = 6 

so that the corresponding necessary bulk is 

Thus, one always has 

gl(u*(·)) < gl(u(·)), 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

as a matter of fact, the amount of material saved by using a natural bar 

increases with a decrease in the allowable extension 6. 

3.5. Conclusion. Some examples of the application of the concept 

of Pareto-optimality in Mechanics have been given. The objective in the 

first example was to minimize the disturbance to an optimally controlled 

system due to the introduction of measuring devices. It seems that such 

a consideration would enter into the design of any feedback system where 

the current state is to be measured with a consequent disturbance to the 

system. Naturally, the concept has applications in other engineering and 

nonengineering fields; in particular, it should be of further interest in 

electrical engineering where small disturbances can cause considerable 
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alterations of the system. 

The second application concerned optimal structural design. There 

are many problems for which the optimality criterion is predetermined by 

the result one wishes to attain; that is, the objective might be to mini­

mize the weight, a particular deflection, or the natural frequency of the 

structure, and so on. This type of problem was not considered here or in 

Stadler 28, rather it was the intent to present a whole class of structures 

whose properties are desirable under any circumstances. Another example 

1~hich gave impetus to the name "natural structure" was that of a branch, 

which is the result in the calculation of the natural shape of a canti­

lever beam loaded only by its own weight. This example and more are 

given in the same reference. It seems desirable to carry on additional 

investigations concerning the properties of such natural structures. The 

fundamental concepts of mass and stored energy appear directly or in some 

equivalent fonn in many other fields; thus, the same sort of "structure" 

would appear in any of these fields with the corresponding, possibly de­

sirable, properties. Hence, a further extension of the theory in these 

directions would be appropriate. 
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DOMINATION STRUCTURES AND 
NONDOMINATED SOLUTIONS 

P. L. Yu 
Graduate School of Business 
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Austin, Texas 78712 

1. INTRODUCTION TO DOMINATION STRUCTURES 

It is a well-known fact that decision makers are often faced with 

making decisions involving more than one criterion. Although every decision 

maker eventually makes his decision based on his intuition or judgement, 

it does not mean that he cannot benefit from a systematic analysis of his 

decision problem. In order to aid him in reaching a "good" decision, a 

number of concepts have been introduced, such as satisfaction, efficiency, 

utility construction, compromise solution, chance constraints, goal pro-

gramming, and generalizations such as domination structures and nondominated 

solutions. 

In this talk we shall focus on domination structures and nondominated 

solutions which were first introduced in [36]. We shall discuss the 
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relationships between these concepts and other solution concepts. Some 

main characteristics of nondominated solutions will be discussed. Compu­

tational methods to obtain solutions as well as applications of the domina­

tion structure concept will be described. 

In order to facilitate our discussion, we consider the following stock 

investment problem (from now on we shall use the letters SIP to refer to 

this problem): An investor wants to invest $Min n stocks for a year. 

Assume that the expected return and the variance of the return for each 

stock arc the only information available to him. How should he make his 

decision? This is a typical example of a multicriteria decision problem. 

Observe that this problem involves two basic elements: a set of choices 

(all possible allocations of $M among n stocks) and a set of criteria (the 

expected return and the variance of the return) for each choice. In fact 

every multicriteria decision problem has these two elements. A more de­

tailed and extensive discussion of SIP can be found in [38]. For the 

convenience of later discussion, we shall use the following notation. 

Definition 1.1. We shall use X to denote the set of all feasible 

choices of our decision problem and call it the decision space. An ele­

ment of X will be denoted by x. The criteria function (defined for all 

x c X) will be denoted by f(x) = (f1 (x), ... ,fl(x)). The set Y = {f(x)ix EX} 

will be called the criteria space. An element of Y will be denoted by y. 

We shall assume that Y ~ontains at least two distinct points; otherwise, 

our decision problem is not interesting. 

Remark 1.1. It is usually very difficult to visualize the precise 

shape of Y. However, with certain conditions on X and f(x), we can study 
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the cone convexity of Y. (See Section 2). We shall study decision making 

rationale based on Y, although the actual decision must be a point of X. 

Example 1.1. In SIP, we can let (m1 , ... ,m) with m. > 0 and I m. = M n 1 = . 1 
1 

denote an investment policy. Let x. = m./M. We see that 
1 1 

Let X 

X= {(x1, ... ,x llx. > 0, L x. 
n 1 = i 1 

1}. 

the variancet of the return from policy x 

the expected return from x 

Then the criteria space of the SIP is given by 

(1.1) 

(1. 2) 

(1. 3) 

Now, given X and Y, how do we make a good decision? There are a number of 

well-known solution concepts for this problem discussed in the literature. 

Although each solution concept has its merits and shortcomings, none has 

been accepted universally (for a survey see [21]). We can classify the 

existing solution concepts as follows. 

(i) One dimensional comparison: In this class of solution concepts, 

one first constructs a real-valued function u(y) defined on Y. Then an 

extreme value u(y) (maximum or minimum) over Y is located for the decision. 

In the case of maximizing u(y), u(y) is referred to as a utility function, 

efficiency index or preference ordering. Much research has been devoted to 

t Note that as a consequence, as f 1 (x) increases, the variance of the 

return from choice x decreases. 
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the construction of such a utility function. [See [7]]. In the case of 

minimizing u(y), u(y) may be interpreted as a regret function or a function 

representing the distance from the utopia or ideal point. Compromise 

solutions and goal programming belong to this class of solution concepts. 

[See 4, 35]. The concepts of minimax and maximin also belong to the 

category of one dimensional comparison solution concepts. 

(ii) Multiple dimension comparison: A solution x0 is efficient or 

Pareto optimal if there is no other feasible solution x so that 

f. (x) > f.(x0) for each i = 1, ... ,! 
1 - 1 

0 and f(x) ~ f(x) where f = (f1 , ... ,fl). 

Let (F1 (y), ... ,FP(y)) be a set of real-valued functions defined on the 

0 criteria space Y. Then x is functionally efficient with respect to 

(F1 , ... ,Fp) if there is no other feasible x such that Fi(f(x)) ~ Fi(f(x0)) 

0 for each i = l, ... ,p, and F(f(x)) ~ F(f(x )) where F = (F1 , ... ,Fp) 

[See [4]]. This concept of efficiency or Pareto optimality has been used 

quite extensively in the social sciences. These solutions are also called 

noninferior points or admissible strategies in other contexts. [See [6]]. 

(iii) Satisficing Models: In this approach the decision maker first 

establishes either 

1) a minimal satisfaction level for each criteria or 

2) an upper "goal achievement" level for each criterion. 

In the first case a decision which does not exceed the minimal level for 

each criteria is unacceptable and will not be considered as a possibility 

for the final decision. In the second case any decision which exceeds 

the established upper level for each criteria is an acceptable final 

decision. 
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(iv) Ordering and Ranking: Instead of defining a real-valued 

function over Y as in (i), we define a binary relation which may or may 

not be a partial ordering over Y. We then find the resulting maximum or 

minimum elements over Y whenever they are well defined. Note that (ii) 

may be regarded as a special case of (iv). See [26,31]. 

(v) One at a time and iterative procedure: We first order the 

criteria according to their importance to the decision-maker such that if 

i < j then f i is more important than f j • We then maximize f 1 over X. 

this maximal solution is now unique, it will be used for the decision. 

Otherwise we maximize f 2 over those points which maximize f 1 over X. 

If 

If 

this maximal solution is now unique, it will be used for the decision. 

Otherwise we maximize f 3 over those points which maximize both f 1 and f 2. 

The procedure is repeated until a unique solution is obtained or all the 

criteria have been considered. This solution approach is called a 

lexicographic ordering. Another iterative method has been used in the 

concept of satisficing. The idea is to start with a low satisfaction 

level for each criterion. If there are more than one solution the satis­

faction level will Pe raised iteratively until a final decision can be 

obtained. Note that "gradient search" [13] can be put in this category 

too. 

Clearly, the above concepts can be mixed and used simultaneously. 

For instance, combining (i) and (iii), we have a mathematical programming 

problem where the objective to be maximized is specified by (i) and the 

constraints are given by (iii). In the case where the upper goal achieve­

ment level of each criterion are known and there are no available solutions 
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which exceed each upper level, we can construct a regret or distance func-

tion. This function will specify the distance from each feasible y to the 

set of points which satisfy the upper level of each criteria. This will 

result in a combination of (iii) and (i) again. Other combinations such 

as (i) and (ii), (i) and (iv), (i) and (v), (ii) and (vii), (ii) and (v), 

etc., are certainly possible. We shall leave these to the reader's 

imagination. 

We do not intend to make a survey of the literature. However we hope 

that the above summary will help our discussion. We shall return to these 

solution concepts after we introduce the following concepts of domination 

structures and nondominated solutions. 

1 
Given two outcomes, y d 2 . y . 2 an y , 1n , we can wr1te y 

y1 is preferred by the decision maker to y 2 , written y1 r 
of this preference as occuring because of the factor d. 

1 
y +d. If 

2 y , we can think 

Definition 1.2. A nonzero vector d is a domination factor for y £ Y 

if y ~ y + Ad for all A > 0. The set of all domination factors for y 

together with the zero vector will be denoted by D(y). The family 

{D(y) IY E Y}, denoted simply by D(·), is called the domination structure 

of our decision problem. 

Remark 1.2. By the definition, given a domination factor, d, for y, 

then any positive multiple of d is also a domination factor for y. It 

follows that, given y1 ~ y 2 , it is not necessarily true that d = y 2 - y1 

is a domination factor for y1 Intuitively, one may regard a domination 

factor as a "bad" factor (thus, any positive multiple of it is also bad). 

Definition 1.3. 
1 2 1 

Given Y, D(·) andy , y of Y, by y is dominated by 
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2 12 2 z I 2 y we mean y E y + D(y) = {y + d d E D(y )}. 0 A point y £ Y is a 

nondominated solution (or nondominated outcome) if there is no y1 £ Y, 

1 0 0 1 1 0 y ~ y , such that y £ y + D(y ). Thus y is nondominated if and only 

if it is not dominated by any other outcome. Likewise, in the decision 

space S, a point x0 £ X is a nondominated solution (or nondominated 

decision) if there is no x1 £ X so that f(x 0) ~ f(x1) and f(x0) £ f(x1) + 
1 D(f(x )). The set of all nondominated solutions in the decision and 

criteria space will be denoted by NX (D(·)) and NY (D(·)) respectively 

(or NX and NY respectively when D(·) is unambiguously specified). 

One important class of domination structures is characterized by the 

condition that D(y) = A, A is a convex cone for all y £ Y. In this case, 

we shall call A the domination cone. Because of its geometric significance, 

we have 

Definition 1.4. A nondominated solution with respect to a domination 

cone A is called a A-extreme point. The set of all A-extreme ("cone-

extreme") points is denoted by Ext [YjA]. 

Example 1.2. The additive weight method is an important approach in 

one dimensional comparison category (i). One first finds a weight vector 
.e. 

(or weight ratio) A= (A1 , ... ,A{) and then maximizes A·f = L A.f. (x) 
i=l 1 1 

over X. We see that this method implicitly uses a constant domination 

cone A = {d £ R.e_jA·d < 0} for each y £ Y. Note that A is a half space. 

Thus in order to use this method, a very strong assumption on the preference 

structure has to be imposed. Once A is revealed, it is not difficult to 

select the solutions which maximize A"f, or equivalently the nondominated 

solutions with respect to the domination cone A. 
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Example 1.3. To specify the weight ratio precisely for the additive 

weight method usually is a very difficult task. A more practical and 

realistic way to proceed is to require the weight ratio or weight vector 

to lie in a specified convex set. For instance, for SIP we may require 

that (\ 1,\ 2) satisfy t < \ 2/\ 1 < 2. This is an important revelation of 

preferences. As will be seen in Remark 2.1, if we set 

A= {(d ' d) I dl + 2d2 ~ 0 
1 2 2d + d < 0} 

1 2 = 

Figure 1 

(see Figure 1), then all optimal solutions resulting from the additive 

weight method with the bounds t < \ 2/\ 1 < 2 will be contained in Ext[YJA]. 

Thus in terms of the final decision which is generated, specifying the 

bounds of the weight vectors as above is "equivalent" to specifying a 

constant domination cone A. (See Remark 2.1 for further discussion.) 

Example 1.4. Suppose that we specify a pseudo-concave utility function 

U(y) with VU(y) ~ 0 over Y. Then, implicitly, we have assumed a domination 

structure with D(y) being bounded by: {dE R!jVU(y)·d < 0} c D(y)c 

{d E lJvu(y)·d ~ O}. Note that if y0 maximizes U(y) over Y, then y0 is 
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nondominated with respect to D(·). Also observe that each D(y) is at 

least a half space and in contrast to Example 1.2, D(y) varies withy. 

Note that the requirement that each D(·) is at least a half space is im-

plicitly assumed in the revealed preference theory. (For instance see [15]). 

Example 1.5. Let A~= {d E Rtld ~ 0}. We see that y is Pareto 

~ 
optimal or efficient if and only if y is a A- -extreme points. That is, 

in the concept of Pareto optimality one uses a constant domination cone 

A~. Observe that A~ is only l/2t of the entire space. When t = 6 for 

~ 6 s:. instance, A- is only 1/64 of R • (Of course, in this case, A- is much 

smaller than a half space.) 

Remark 1.3. In one dimensional comparison, suppose that the set Y* 

of optimal solutions of U(y) over Y is a convex set. We can easily con-

struct a domination structure so that each optimal solution is a nondom-

inated solution with respect to this domination structure. When U(y) has 

some special concavity properties which are usually assumed (see Example 

1.4), the domination structure can be constructed in such a way that each 

D(y) contains at least a half space for each y E Y except in the interior 

Y*. This half space requirement on D(y) for each y is usually very difficult 

to fulfill and makes the solution concept difficult to be accepted or 

applied. 

Remark 1.4. As shown in Example 1.5, the Pareto optimal or efficient 

solution concept is associated with a constant domination cone A~ which is 

only l/2t of the entire space, Rt. In this approach, we do not take ad-

vantage of any additional partial information concerning the decision 

maker's preferences. For instance, it is not unusual that the decision 
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maker may be able to specify bounds on the ratio of the weight vectors 

(see Example 1.3). This information will reveal a constant domination 

< 
cone which usually is much larger than A=. In our later discussion we 

shall show how we can regard domination cones as "information sets" which 

characterize the decision maker's preferences; we also show how to select 

domination cones for the decision making when preferences are partially 

known. 

Remark 1.5. 1 2 Given a domination structureD(·) on Y, for y , y E Y 

1 2 2 1 1 we can define y ~ y if and only if y E y + D(y ). If in ally E Y, 

D(y) A, a constant domination cone containing no subspace other than {0}, 

then "~" is a partial ordering on Y. However, in general, the relation 

"}:"is not necessarily transitive. (Also see (iv) ordering and ranking.) 

Remark 1.6. As it will be shown later, nondominated solutions are 

closely related to the additive weight method (one dimensional comparison) 

and satisficing models. We shall show that each nondominated solution must 

be a unique maximum solution of an objective function which is a linear 

combination of the criteria subject to a set of constraints which are also 

linear combinations of the criteria. The objective and the constraints are 

in fact interchangeable. 

The following are some basic properties enjoyed by nondominated 

solutions. 

Theorem 1.1 (Lemma 4.1. of [36]) 

(i) 
Y if A 

Ext [YjA] = {cp if A {~l 

(ii) If A1 cA2 then Ext [YjA2] c Ext [YjA1] 

(iii) Ext [Y+AIAl CExt [YIAl 
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(iv) Ext [YIA1 c Ext [Y+AIA1 if A contains no nontrivial subspace. 

Remark 1.7. (ii) of Theorem 1.1 coincides with our intuition that 

that larger is the domination cone the smaller is the set of all nondom-

inated solutions. This property is very important in our later discussion. 

Observe, if L is the maximum linear subspace contained in A, then 

by the decomposition theorem, we can write A= L $ Al., where Aj_ =An r/ 

(LL is the orthogonal space of L). Note that if L = {0}, then A = AL. 

Also note that AL is uniquely determined for each A. 

Theorem 1.2. (Theorem 4.1. of [36]) 

A necessary and sufficient condition for y0 £ Ext [YIA1 is 

(i) Yn (yO+ L) = {y0} and 

(ii) yO l. £ Ext [Yl.l A 1 ] 

where Lis the maximum linear space contained in A, and y0l., YL, AL are 

the projections of y0 , Y and A into Lj_ respectively. 

Remark 1.8. Whenever A contains a nontrivial subspace, troublesome 

complications often arise in our analysis. For examples of this see [36]. 

Theorem 1.2. implies that we can avoid such pathological behavior by work­

ing with Y1 and A1 . 

Corollary 1.1. 

Suppose that AL ~ {0}. Then 

(i) y0 £ Ext [YIA1 implies that y 0 is a boundary point of Y +A. 

(ii) Ext [YjA] =~whenever Y +A= Rl. (This corollary comes from 

Corollary 4.1-4.2 of [36].) 
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Theorem 1. 3. 

Suppose that D(y) is convex for each y £ Y. Then 

NY (D ( ·)) c Ext [Y /A 01, where 

P.L. Yu 

A0 = n {D(y) Jy £ Y} (i.e., the intersection of all D(y), y £ Y). 

Assume further that each D(y) contains no non-trivial subspace. Let 

Y Y n(y+D(y)). Then 
y 

(i) 

(ii) 

(iii) 

{y0 } = Ext [Y /D(y0)] 
Yo 

If NO c Ny(D(·)) and YN = U{Y Jy £NO} then NO c Ext [YN /AN] 
0 y 0 0 

where AN = n {D(y)) Jy £ N0} 
0 

if Y U {\/Y £ Ny(D(·))} then Ny(D(·)) C Ext [Y/AN] where 

AN= n {D(y)Jy £ Ny(D(·)} 

('l11e above theorem comes from Lemma 5 .1. of [ 36]) 

Definition 1. 4. 
0 

Suppose that A = n {D(y) Jy £ Y} # {0}. For 

n = 0, 1, 2, ... , we construct two sequences {Yn} and {An} as follows, 

Y0 = Y and 

Yn+l = Ext [Yn/An] with 

An = n {D(y) Jy £ Yn} 

Theorem 1.4. (Lemma 5.2. of [36]) 

(i) 
n n+l n 

Y ::J Y and each Y ::J NY (D ( · ) ) · 

(ii) {Yn} has the limit Y = n {Yn/n = 0, 1, ... }andY ::J Ny(D(·)). 

Remark 1.9. Theorem 1.3. can be used to estimate a domination cone 

while Theorem 1.4. can be used as an iterative procedure to locate Ny(D(·)). 

Because cone extreme points play a vital role in applications and in 

computing nondominated solutions, in the next two sections we shall focus 

our attention on basic necessary and sufficient conditions for a point in 

Y to be a cone extreme point. 
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2. ADDITIVE WEIGHTS MAXIMIZATION, CONE CONVEXITY AND CONE EXTREME POINTS 

Definition 2.1. The polar cone of A is defined by A*= {AjA·d ~ 0 

for all d e: A}. 

Definition 2.2. A cone (not necessarily closed or convex) is said 

to be acute if there is an open half space H such that AC H V {0} (where 

A is the closure of A). 

·'~ * 
It is know that' Int A 1 ~if and only if A is acute, furthermore we 

* can write Int A ={AjA•d < 0 for all nonzero de: A}. (See Theorem 2.1. of 

[36] . ) 

Definition 2.3. Let A be a nonzero vector. Define Y0 (A) = 

{y0 e: YjA·y0 = sup A·y, y e: Y}. Note that Y0 (A) is the set of all maximal 

points of A·y over Y. 

Theorem 2 .1. 

(i) If A e: Int A*, then Y0 (A)C Ext [YjA]. Thus U{Y0 (A)jAe:Int A*}c 

Ext [Y jA]. 

(ii) 

(iii) 

* Suppose that A is acute. Let 110 = {0} U Int A. 

A 1 0, implies that Y0 (A) C: Ext [YjA0]. Thus 

U{Y0 (A)jA e: A*, A 1 O}C Ext [YjA0]. 

* Then A E: A , 

* 0 0 If A e: A andY (A) contains only one point, then Y (A)CExt [YIA]. 

((i) and (iii) come from Lemma 4.4 of [36], (ii) can be proven 

easily by using the assumption on acute cone.) 

tint 11* denotes the interior of A*. 
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* * * Remark 2.1. Note that if Int A f ¢ then (Int A ) * * (A ) 

(the closure of A). Thus according to (i)- (ii) of Theorem 2 .1., if the set 

of all possible weight vectors A is bounded by the interior of a convex 

cone II* or by a closed convex cone A*, then each optimal solution will be 

a cone extreme point with respect to the cone ~ = (II*)* or 110 = {O}U 

Int (II*)*. In this way, we see that by specifying a set of possible weight 

vectors and using the additive weight method, we implicitly induce a 

domination cone so that the candidates for the final decision will be the 

related cone extreme points. Note that specifying a set of possible 

weight vectors and using the additive weight method involves a more strict 

assumption than the induced domination cone does. This is because the 

former produces less candidates for final decision than the latter does. 

(See Example 1.3.) 

As a consequence of Theorem 2.1., we have 

Corollary 2.1. Ext [YjA] ~ ¢ if one of the following conditions 

holds: 

(i) there is A c II* so that Y0 (A) contains only one point, 

(ii) Y is compact and A is acute. 

Definition 2.4. 
t 

Given a set S and a cone A in R , we say that S is 

A -convex ("cone-convex") if and only if 

S +A= {s + Als c S, A c A} is a convex set. 

Example 2.1. Given A be specified as in Figure 2. 0, s1 in Figure, 

2.1. is A-convex, but s2 in Figure z;z is not A-convex. 
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Figure 2.0 Figure 2.1 Figure 2.2 

A cone which is a closed polyhedron is called a polyhedral cone. If 

A is a polyhedral cone, then A* is also a polyhedral cone and there are a 

finite number of vectors {H1 , .•. , Hq} 

ai ~ 0}. {H1 , ... , Hq} will be called 

for A*. 

m 
so that A* = { I a1ailai £ R1, 

i=l 
a generator (or a generating set) 

Theorem 2.2. (Lemma 3.1. and Corollary 3.4. of [36]) 

(i) m Let A1 , A2 be two convex cones in R such that A1 c A2. Then Y 

is A1-convex implies that Y is A2-convex. 

(ii) 1 q Let A be a polyhedral cone with {H , •.. , H} as a generator for 

A*. Suppose that X is a convex set and that each Hj·f(x) is a concave 

function over X. Then Y = f[X] is A-convex. 

Example 2.2. In SIP (see Example 1.1), clearly f 1 is a concave 

function. Suppose that f 2 is linear. Then Y is A-convex for any A con­

taining U = {a(-1,0) Ia £ R1 , a~ 0}, because Y is U-convex. (Note that 

{(0,1), (0,-1), (1,0)} is a generator for U*. As a consequence of 

Theorem 2.2, Y is U-convex.) 

Theorem 2.3. (Corollary 4. 7 of [36]) 

Suppose Y is A-convex and AL ~ {0}. Then 

(i) U{Y0(t-)j.:\ £ Int A*} CExt [Yji\]CU {Y0(:\)j:\ £A*,.:\~ 0} 
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(ii) If for all boundary points of A* except 0, Y0 (A) is either empty 

or contains only a single point, then Ext [Y[AJ = U{Y0 (t.) It- E A*, t. 1 O} 

Theorem 2.4. (Theorem 2.5 of [41]) 

Suppose that Y is a polyhedron and that A is a polyhedral cone. Then 

(i) Ext [Y[A] c U {Y0 (A) [A E (A*) 1 } where (A*)I is the relative 

interior of A*. 

(ii) If Int A* 1 Q>, then Ext [Y[A] = U {Y 0 (t.) [A £ Int A*}. 

Remark 2.2. Theorem 2.3 is a generalization of a decision theory 

theorem that every admissible strategy is Bayes, and that every strategy 

which is Bayes against positive weights is admissible. Theorem 2.4 states 

an important property which is enjoyed by linear multicriteria decision 

problems; The theorem in fact asserts that in statistical decision 

problems which have a finite number of states of uncertainty and a finite 

number of actions from which to choose every admissible strategy is a 

Bayes against positive weights and conversely, every Bayesian strategy 

against positive weights is admissible. 

Theorems 2.3 and 2.4 also have an important implication for the con­

struction of utility functions. They give conditions which imply that a 

utility function can be approximated by using the additive weight method. 

They also state the bounds for the weights to be used. In order to demon-

strate this point, we introduce 

Definition 2.5. A function U(y) over Y is said to be decreasing in 

the direction d 1 0 if U(y + t.d) < U(y) whenever y E Y, y + Ad £ Y and 

A > 0. We say tbat U(y) is decreasing in a convex cone A if it is decreas­

ing in each direction represented by the non-zero elements of A. 
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Theorem 2.5. 

Suppose that U(y) is decreasing in A over Y. Suppose also that Y is 

A-convex and A~ ; {0}. Then there is A E A*, A ~ 0, such that the maximum 

point of U(y) is also a maximum point of A·y over Y. When both Y and A 

I 
are polyhedral, A can be selected from (A*) • 

Proof 

By assumption, the maximum point of U(y) over Y must be a A-extreme 

point. Our assertions then follow from Theorems 2.3 and 2.4. 

Example 2.3. In the SIP, suppose that f 2 (the expected return) is 

linear. (See Example 2.2.) Suppose that the investor is risk averse. 

That is if f 2(x) = f 2(x') and f 1 (x) > f 1 (x') then f(x) is preferred to f(x'). 

Also if f 1 (x) = f 1 (x') and f 2(x) > f 2 (x') then f(x) is preferred to f(x'). 

Since the higher is f 2 the more preferred will it be, we may assume that 

< 
the utility function, if it exists, is decreasing in A=. Thus the maxi-

mization of the utility function may be approximated by the maximization 

of an additive weight function A1f 1 + A2f 2 with A1, A2 ~ 0 and A1 , A2 not 

both zero. 

3. SATISFICING, ADDITIVE WEIGHT MAXIMIZATION AND CONE EXTREME POINTS 

In the previous section, we described the main characteristics of 

Ext [Y I A] whenever Y is A '-convex for some A' c A. In this section cone 

convexity assumption on Y will be removed. We shall show that cone extreme 

points enjoy the unique maximization of an additive weight objective 

function subject to a set of additive weight constraints. The objectives 

and the constraints are interchangeable. We shall present two basic 

formulations. 
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Throughout this section, unless otherwise specified, we shall assume 

that A is a polyhedral cone with {H1 , ••• , Hq} as a generator for A*. For 

a generalization of the results to be described, we refer to [36]. 

o o I k k o Definition 3.1. Given y £ Y, we define Y.(y) = {Y £ Y H •y ~ H •y , 
J 

k= 1, ... , q, k:f j}. 

Note that Y. (y0) is the set of ally in Y which makes Hk·y at least 

k b 
as large asH ·y for all k = ], ... , q except j. 

Theorem 3.1. (Theorem 4.2 of [36]) 

y0 £ Ext [YIAJ if and only if for any arbitrary j 

uniquely maximizes Hj·y over ally£ Y,(y0). 
J 

1, ... , q, y 
0 

Remark 3.1. Hj·y = Hj·f(x) is an additive weight form. Since j is 

arbitrary, any constraint and the objective function are interchangeable~ 

Note that "uniqueness" is an important property which reveals that in using 

ordinary mathematical programming we have to pay special attention to 

alternative "optimal" solutions; otherwise, we may obtain a "dominated" 

solution. 

Remark 3.2. Theorem 3.1 can be used to verify whether a particular 

point is nondominated or not. However, using it to locate the set of non-

dominated solutions is computationally inconvenient. Thus we shall discuss 

a second procedure derived from Theorem 3.1. 

Definition 3.2. Let r(j) be the vector in Rq-l representing 

{rk £ Rllk :f 

Y(r(j)) 

j, k 1, ... , q}. We define 

{y £ YIHk•y ~ rk, k :f j, k = 1, ... , q}. 

Note that Y(r(j)) is the set of points in Y which satisfy Hk·y ~ rk, 

k :f j, k = 1, .•. , q. Note, rk may be regarded as a satisficing level for 

k 
H ·y. 



Domination Structures and Nondominated Solutions 245 

Theorem 3.2. (Theorem 4.3 of [36]) 

y0 £ Ext [YiAJ if and only if for any arbitrary j = 1, ••• , q there is 

r(j) such that y0 uniquely maximizes Hj·y over Y(r(j)). 

Remark 3.3. 
< > l 

Note that (A=)* = A= = {d £ R id ~ 0}. Thus the set 

{ej lj = 1, ••• ,!}, where ej is the jth column of the l x l identity matrix, 

is a generator for A~. Note that ej·y yj (the jth component of y). 

With this observation and Theorems 3.1- 3.2, we have the following results. 

Theorem 3.3. 

0 < 0 
y £Ext [YiA=] (i.e., y is Pareto optimal or efficient) if and only 

if for any arbitrary j = 1, ••• , l, y0 uniquely maximizes yj over all 

Y £ {y £ Yiyk ~ y~, k = 1, ••• , !, k f j}. 

Theorem 3.4. 
0 < 

y £Ext [YiA=] if and only if for any arbitrary j = 1, •.. , l there 

are l-1 constants {rklk = 1, •.• , f, k f j} such that y0 uniquely maximizes 

yj for ally£ {y £ Ylyk ~ rk, k = 1, •.• , l, k f j}. 

ExampL: :1. 1. 
dl + 2d2 ~ 0 

In SIP suppose that A= {(d1 , d2) } Then 
2dl + d2 ~ 0 

A*= {(>.1 , >- 2)· [i ~] >- 1 ,>.2 ~ 0}. (See Figure 1.) That is, (1,2) and 

(2,1) form a generator for A*. Suppose that Y is as in Figure 3. 

Then y0 £Ext [YiAJ because (1,2)· (y1 ,y2) has the unique maximum at y0 

0 over Y2 (y ). Note that y* is not a A-extreme point because it does not 



246 P.L. Yu 

~---------------------+Y 

Figure 3 

4. NONDOMINATED SOLUTIONS IN THE DECISION SPACE 

In this section we shall derive conditions for nondominated solutions 

in the decision space. For simplicity we shall focus on one-stage deci-

sion problems. The extensions of our results to dynamic cases are straight 

forward. We shall refer to [40] for such extensions. 

In order to make our presentation more precise, let us define the 

decision space by 

or 

X= {x £ Rnlgi(x) ~ 0, i = 1, ... , m} 

X= {x £ Rnlg(x) ~ 0} with g = (g1 , ... , ~). 
(4.1) 

Given a convex cone A in Rm, we define the set of all A-extreme 

points in the decision space by 

x0 (A) = {x £ xlf(x) e Ext [Y!A]}. (4.2) 

Thus, 

Ext [Y!Al = f[X0 (A)] = {f(x)ix £ x0 (A)}. 

Now by applying the results in Section 2 and 3 we can derive the 

conditions for nondominated decisions. For instance if we apply Theorem 

3.1, we will have 
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Theorem 4. 1. 

Suppose A is a polyhedral cone with A* generated by {H1 , ••• , Hq}. 

Then 

(i) A necessary condition for x 0 E x0 (A) is that for any arbitrary 

j E {1,2, •.. ,q} there are q-1 real numbers {rklk # j, k = 1, ..• , q} such 

that x0 maximizes Hj·f(x) for X E {x E XIHk•f(x) ~ rk' k = 1, ... , q, k # j}, 

(ii) If x0 is the unique maximizing decision for the problem stated 

in (i), then x0 E x0 (A). 

Clearly by applying the different results in Section 2-3, we will 

0 0 obtain a different set of conditions for x EX (A). We shall leave these 

applications to the reader. 

From now on we shall assume the following 

Assumption 4.1 

(i) 

(ii) 

A is specified as in Theorem 4.1 and Ai # {0}; 

k H .f(x) is concave and differentiable over X for each k = 1, ... ,q; 

(iii) g(x) is quasiconvex and differentiable over X and Kuhn-Tucker 

constraint qualificationt is satisfied at each point of X. 

Note that according to (ii) of Theorem 2.2, Y is A-convex. Thus 

Theorem 2.3 can be applied. Define 

xo(\) {x0 E xlx0 maximizes \·f(x) over X} (4.3) 

XA (A) U{X0(\)I\ E A*, \ # 0} (4.4) 

x!<A) U{x0(\)l" E Int A*} (4.5) 

tSee [22] for definition. 
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According to Theorem 2.3 and (4.2)-(4.5) we have 

x1 (fi)C x0 (11) C X (II) (4.6) A A 

From standard Kuhn-Tucker conditions, we have: (Recall that 

Assumption 4.1 is assumed) 

Lemma 4.1 

0 e: X (A) iff there is p e: Rr such that X 
0 

A 0 · r:Jf(x ) - p 0 . r:Jg(x ) 0 

0 
11 g(x ) 0 

p ~ 0 

(4.7) 

(4.8) 

(4. 9) 

(4.10) 

Let I(x0) ~ {ilg.(x0) ~ O} and let 
~ 

0 
Pr(xO) and gi(xO)(x) be the vectors 

derived from p and g(x0) by deleting all components of p and g(x0) which 

are not in I(x0). Define 

F(x0 ,A) ~ {A • r:Jf(x0) lA e: A*, A; 0} (4.11) 

F1 (x0 ,A) ~{A · Vf(x0)iA e: Int A*} (4.12) 

r:Jgi(xO)(xo)IPr(x) ~ 0} 

0 ° 0 with the understanding that G(x ) ~ {0} if I(x ) ~ 0. 

(4.13) 

From Lemma 4.1 one obtains 

Theorem 4. 2. 

Suppose Assumption 4.1 is satisfied. Then 

0 0 0 0 (i) X e: XA(A) if and only if X e: X and F (x , A) n G (x ) ; 0 

(ii) 0 I 
if 

0 I 0 0 
X e: XA(A) if and only X e: X and F (x , A) n G (x ) ; 0. 

Remark 4.1. Similar results for Pareto optimal solutions can be 

easily derived. We shall not stop to do so. 0 I 0 Note that F(x ,A), F (x ,A) 

0 0 and G(x ) are convex cones which are uniquely determined for each x • When 
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g and f are linear or quadratic, such cones will be constant or vary 

0 linearly with x • Then, the condition in Theorem 4.2 can be verified by 

verifying that a system of linear inequalities has solution. 

Let M = {1,2, ••• ,m} and M = {JIJ CM}. For J £ M define 

XJ = {xlgJ(x) ~ 0} where gJ(x) is derived from g(x) by deleting all com­

O ponents of g(x) except those in J. Let XJ(A) be the set of all A-extreme 

points in XJ. Let x0J(A) = {x0 £ x!x0 maximizes A • f(x) over XJ}' and 

I 
let XJA(A) and XJA(A) be defined using (4.4) and (4.5) with x0J(A) in place 

of x0 (A). 

Theorem 4.3. 

(i) XA(A) u (XJA (A) n X) 
JEM 

(ii) x!(A) u (xJ!<A>n x> 
JEM 

Let the number of elements in J be denoted by [J] and let 

;k = {J £ Ml [J] = k}, k = O,l, ••. ,m. For each J £ M, define 

XJ = {xlgJ(x) = O}. We have the following useful decomposition theorem. 

Theorem 4.4. 

If Assumption 4.1 is satisfied, then 

(i) XA(A) 

(ii) x!(A) 

Remark 4.2. 

m 
(XtA (A) n X) U ( U U k [XJA (A) n XJ n X]). 

k=l J£1 
I m I ~ 

(X,.,A(A) n X) U ( U U k [XJA(A) n xJn X]). 
'I' k=l Je:J 

The set XJA (A) n XJ n X could be located by first find-

ing those points XJA(A) on XJ, that is XJA(A) n XJ, and then discarding 

those points of XJA(A) n XJ which violate the constraints gi(x) ~ 0, i i J. 

I 0 Thus, Theorem 4.4 could be used systematically to locate XJA' XJA and X (A). 
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0 0 In addition, it could be used to produce for all x EX (A), A*(x0) 

{AjA E A*, A# 0 such that x0 E x0 (A)}. Thus if A E A*(x0) then x0 

maximizes A · f(x) over X. Of course, l\*(x0) is extremely useful because 

0 it specified properties of x and thus .:::ir1s the find. decision making. An 

example along this line can be found in [8,361. 

So far we have onJy cilscussed nondominated decisions with respect to 

a constant domination cone. To obtain the conditions for nondominated 

decisions with respect to general domination structures, one can apply 

Theorem 1.3 and 1.4. We shall not develop this procedure here. For a 

detailed discussion we refer the reader to [8,36]. 

5. NONDOMINATED SOLUTIONS IN LINEAR CASES AND A MULTICRITERIA SIMPLEX 

METHOD 

When both F(x) and g(x) are linear, the nondominated solutions enjoy 

some special properties. As a consequence the computation of the set of 

all nondominated solutions is greatly simplified in linear cases. In this 

section we shall discuss such special properties and introduce a multi-

criteria simplex method to facilitate the computation of the set of non-

dominated solutions. 

In order to simplify the presentation, we shall use the following 

notation: 

(5.1) 

where A is of order m x n, 

Y = {Cxl x E X} (5.2) 

where Cis of order i x n so that Ck•x, k = 1, ... , i, (Ck is the kth row 

of C), is the kth criterion. Given a matrix C, we shall use Ck and Cj 



Domination Structures and Nondominated Solutions 251 

th th to indicate the k row and the j column of C respectively. 

We shall assume that for ally E Y, D(y) A, a fixed convex domination 

cone; we use "N-point" and "D-point" to denote a nondominated point and a 

dominated point respectively. The sets of all N-points and all D-points 

will be denoted by N and D respectively. Besides .Theorem 2.4, we have 

Theorem 5.1. (Lemma 2.1, Theorem 2.1-2.2 of [41].) 

(i) 
1 2 1 1 2 

Suppose x , x E X and x E D. Then [x , x )c D where 

[x1 , x2) = {ax1 + (l-a)x21o < a~ 1}. 

(ii) D is a convex set 

(iii) Let K be an arbitrary convex subset of X. Then K1 c D whenever 

K1 n D , 0; and K c N whenever K1 n N , 0. (Recall that K1 and K represent 

respectively the relative interior and the closure of K.) 

Since every polyhedral cone can be linearly transformed into a form 
< 

of A= (possibly with a different dimension) [36], we shall from now on 
< 

assume A= as our domination cone. Also we shall assume that X is compact. 

This assumption will greatly simplify our presentation. We note that our 

main results can be extended to the case where X is unbounded. 

Since X is compact, the set of its extreme points is finite and will 

be denoted by X . The set of all nondominated extreme points will be ex 

denoted by N • That is ex 

N Nnx 
ex ex 

t Theorem 5.2. 

Nc H(N ) (the convex hull of N ) • ex ex 

t When X is unbounded, N is contained in the sum of H(N ) and the ex 

nonnegative cone generated by the nondominated extreme rays. 
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Remark 5.1. Theorem 5.1 says that a face of X is either dominated or 

nondominated. The checking of the dominance can be performed at any rela-

tive interior point of the face. In particular any face which contains a 

D-point must be dominated (of course we mean its relative interior). 

Remark 5.2. Theorem 5.2 suggests that we should first find N and ex 

then use it to generate the set N. Clearly we will save a great deal of 

computation if N can be easily found and N can be easily generated from 
ex 

N 
ex 

We first introduce a multicriteria simplex method to locate N The 
ex 

method can be coded for computer computation. 

The main difference between the ordinary simplex method and the 

multicriteria simplex method is in the rows which are associated with the 

criteria. The former has only one row associated with the criterion, while 

the latter has l rows associated with the criteria. 

Without loss of generality, we shall assume that b ~ 0 in (5.1). 

By adding slack variables, the decision space could be defined by the set 

of all x £ Rm+n,x > 0 and 

Our new C becomes (C, 0 ). 
mxm 

(A, I ) X 
mxm 

b. (5.3) 

(5.4) 

Given a basis B which is associated with columns J = j 1 , j 2 , ••• , jm' 

we shall denote the remaining submatrix and columns with respect to (5.3) 

by B' and J' respectively. 

We construct a multicriteria simplex tableau as Tableau 1 (for 

simplicity, we have rearranged the indices so that J appears in the first 

m columns). 
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r BASIS xl . . . X xm+l ... x. . .. m J 

1 xl 1 .. . 0 ylm+l . . . ylj ... 
. . . . . . 
. . . . . . . . . 

. . . . 
m X 0 . . . 1 YDDD+l . . . ymj ... 

m 

0 0 
1 1 . .. zm+l ... zj . .. 

. . . . . . . . . . . . . 
0 0 

£. £. . . . zm+l . . . z. . .. 
J 

Tableau 1 

Where Y { y } 
i . i-1 m J - ••••• 

B-l (A,I ] = B-l(B, B') 
mxm 

j=l, ••• , m+n 

(I, B-l B') 

xm+n 

ylm+n 

. 

. 

YDDD+n 

1 z m+n 

. 

. 
£. 

zm+n 

Z = {z~ } CBY- C = CB(I, B-lB')- (CB,CB') 
J k=l, .... £. 

j=l, ••• , m+n 

(0 C B-lB' - C') 
' B B 
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X 

ylO 

. 

. 

. 

Ymo 

1 v 

. 

. 
£. v 

(5. 5) 

(5. 6) 

(where CB and C~ are the cost coefficients associated with B and 

B' respectively), 

(5. 7) 

and 

V ( 1 v£.) = C B-lb = v , ••. , B (5.8) 

Let us define M as 

M = [ ~ J (m+£) x (m+n) (5.9) 
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Observe that M enjoys the following properties, 

(i) the submatrix {yj jj £ J}, when its rows are properly permutated, 

forms the identity matrix of order m x m, (5.10) 

(ii) the submatrix {Z. jj £ J} is a zero matrix of order t x m. (5.11) 
J 

Obtaining an initial tableau for our problem is a simple application 

of Gaussian elimination technique. For each nonbasic column j £ J', we 

shall define e. as follows 
J 

Y o Yro e = ~ = min { - I > 0} 
]• Y y yr]· 

pj r rj 
(5.12) 

Note that e. is well defined, because X is compact (thus unbounded 
J 

solutions are impossible). 

In our iterations of the multicriteria simplex method, by introducing 

column j £ J' into the basis, we convert Mj into Ep in the next tableau, 

th where E is the p column of the identity matrix of order m + i and p is 
p 

such that (p,j) is the pivot element. At each such iteration M enjoys the 

properties (5.10)-(5.11) and Y,Z can be easily computed. 

Remark 5.3. Observe that the multicriteria simplex method is different 

from ordinary simplex method only in Z, not in Y. One can think that Z 

is associated with i-criteria which we want to "maximize" over the same 

feasible set X. 

k function C x. 

k In fact, the Z , k = 1, ... , t, is associated with objective 

th k If we are only interested in the k criterion, then Z is 

the row of optimality condition in ordinary simplex method. Thus given a 

k basis J, if Z ~ 0, then x(J), the basic feasible solution of J, is an 

optimal solution for the kth criterion. 
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Remark 5.4. Given a basis J and j E J 1 by introducing jth column 

into the basis we produce an adjacent basis J1 • From the simplex method 

and Remark 5.3, we 

That is 

see that the values of the objective functions increase 

1 l 
V(J1)- V(J) = -ejzj, where V(J) = (v , ••• , v) at the 

basis J. This observation yields: 

Theorem 5.3 

Given a basis J 
0 

(i) If there is i, 1 ~ i ~l, 

(ii) 

(iii) 

then x(J ) E N (because o ex 

If there is j € j I so that 
0 

If there is j € j I so that 
0 

where J1 is the new basis 

into the basis. 

i so that each z. > 0 for all j E J 1 

J 0 
i x(J ) uniquely maximizes C x over X). 

0 

ejzj ~ 0, e j zj ;. 0, then x(J ) E D. 
0 

ejzj ~ 0, e j zj ;. 0, then x(J1) E D, 

obtained by introducing the j th column 

(iv) Let j, k E J~ with 6j' 6k <~and, Jj and Jk be the new basis 

th th obtained by introducing respectively the j and k column into 

the basis. Suppose that 6jZj ~ 6kZk, 6jZj ; 6kZk. Then 

x(J.) E D. 
J 

Now let us consider the problem of maximizing ACX over X. Let 

z(A) = (z11 , ... , zlm+n) be the row associated with the optimality condition 

in the simplex method. Then given a basis B with CB, CB and Y defined as 

in (5.5)-(5.6), we see that 

z (A) (0 AC B-lB 1 - AC 1 ) 
' B B 

= A (C Y - C) 
B 

AZ 

Thus we have -

(5.13) 
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Theorem 5. 4 

For every basic feasible solution, z(A) AZ. 

Theorem 5.5 

Given a feasible basis J, let Z(J) be the matrix Z associated with J. 

Then the basic feasible solution x(J) maximizes ACX over X for all 

A£ A(J) = {AiAZ(J) ~ 0}. (5.14) 

Remark 5.5. Observe that A(J) is a polyhedron and 0 £ A(J). Given 

x(J), A(J) is its associated set of optimal weights. 

According to Theorem 2.4 and 5.5, we have 

Theorem 5.6 

A feasible basic solution x(J) is anN-point if and only if 

> 
A(J) n A #- 0. 

Although Theorem 5.6 can be used to test whether a basic feasible 

point is an N-point, its application involves determining whether a cer-

tain system of linear inequalities has a solution. This test is usually 

not very efficient. We shall derive a method called the nondominance 

subroutine to perform the test. 

Let x0 = x(J) represent a basic feasible solution with basis J. 

Let e = (e1, ... , ei) and 

i 
w max l ei over 

i=l 

-X = { (x,e) x £X, Cx- e ~ Cx0 , e ~ 0} 

Theorem 5.7 

(i) x0 is an N-point if and only if w = 0. 

(ii) x0 is a D-point if and only if w > 0. 

(5.15) 
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Proof 

0 Observe that (x , 0) £ X. Thus w ~ 0. It sufficies to show (i). 

However, (i) is another way to define an N-point with respect to the 
< 

domination cone A=. Q.E.D. 

Observe that finding whether w = 0 or not in Theorem 4.4 does not 

require too much extra work. In order to see this, let B be the basis 

associated with x0 or J. The problem of (5.15) in a block simplex tableau 

can be written 

A 
mxn I 

m:xm. 

where 11xi = (1, 1, •.• , 1). 

0 

(5.16) 

(5.17) 

(5.18) 

In the above matrix, the first and second columns are the coefficients 

associated respectively with the original variables and the added slack 

variables, the third coltmm is the coefficients associated with the new 

variable e in (5.15). Note that (5.16) is tne constraint that x s X, 

0 (5.17) is the constraint that Cx- e ~ Cx , that (5.18) corresponds to the 

objective of (5.15). 

We could rewrite (5.16)--(5.18) as follows: 

B-lA B 
-1 

0mxi 
B-lb (5.19) 

CBB-lA-C C B-1 
B Iixi 0ixl (5.20) 

11xi 
[C B-1A-C] -1 

0 (5.21) B 11xi[CBB ] 01xi 
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Note that (5.19) B-1 (5.16), (5.20) = CB(5.19)-(5.17) (observe that 

-1 0 
CBB b = Cx ), and (5.21) = llxi[(5.20) + (5.18)]. 

Observe that (5.19)-(5.21) supply a feasible simplex tableau for 

0 Problem (5.15) with the basic feasible solution (x,e) = (x ,0). Comparing 

that (5.19)-(5.21) with (5.5)-(5.7), we see that (renumbering the indices 

of x. if necessary) 
J 

-1 
B 

[ : J 
(5.22) 

From (5.19)-(5.22) we see that to construct a simplex tableau for Problem 

(5.15) does not require too much extra work. The conditions in Theorem 

5. 7 could be easily verified. In particular, we have the following suf-

ficiency condition. 

Theorem 5.8 

Given a basis J, suppose llxi Z ~ 0. 

Then x(J) is an Nex-point. 

Proof 

Because the first two blocks of (5.21) are given by llxi Z, 

llxlz ~ 0 implies that (x(J), 0) is an optimal solution to (5.15) with 

value w = 0. Our assertion follows immediately from Theorem 5.7. 

Remark 5.6. In order to use the results of (5.19)-(5.22} and 

Theorems 5.7 and 5.8, one can append an extra row corresponding to the 

objective function llxic to the simplex tableau. Suppose that the con­

dition in Theorem 5.8 is not satisfied. Because of the special structure 

of (5.19)-(5.21), the problem of (5.15) usually can be simply solved in a 
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few iterations. Note that in the subroutine we usually need to check only 

a small submatrix of the matrix defined by (5.19)-(5.21). In order to see 

this, observe that if we start with (5.19)-(5.21) as the initial tableau 

for Problem (5.15), and if B-~ > 0, we can delete all basic columns of M 

(see (5.9)) and all rows of (5.19) (i.e. those rows associated withY). 

At each iteration, we need to consider three possible cases in the remain-

ing submatrix. The first case is that all remaining elements of the row 

(5.21) are nonnegative. Then Problem (5.15) achieves its maximum with 

w = 0. Thus we have anN-point (by Theorem 5.7). The second case is that 

at least one remaining element of the row (5.21) is negative and each un-

deleted element of the associated column is nonpositive. Then we can 

obtain a feasible solution of Problem (5.15) which yields ~ ei > 0 (because 
1 

the associated e. > 0 and thus w > 0). 
J 

Thus from Theorem 5.7, we obtain a 

D-point. The last case is that at least one remaining element of Row 

(5.21) is negative and some undeleted element (say i, j) of the associated 

column is positive. t Then the associated e. will be zero. We can "pivot" 
J 

at the element (i,j) to obtain a new tableau. Observe that B-~ will not 

be changed by the pivoting. Thus the process can be repeated until one of 

the first two cases occurs. 

Remark 5.7. Once J is found to be anN -basis, (5.14) can be used 
ex 

to find its related set of optimal weights A(J) with no extra work from 

the multi-criteria simplex tableau. Thus our remaining crucial task is 

to find the set N using the multicriteria simplex method. 
ex 

t 
See (5.12) 
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Definition 5.1. Let E ~ lx(i) I i = 1, ••• , p} be a set of extreme 

points of X. We say that E is colinected if it contains only one point or 

if for any two points x(j), x(k) in E, there is a sequence {x(i1), ••• , x(ir)} 

in E so that x(it) and x(il+l), t = 1, ... , r-1, are adjacent and x(i1 ) 

x(i ) = x(k). 
r 

The proof of the following theorem can be found in-[41]. 

Theorem 5.9 

The set N is connected. ex 

Remark 5.8. In view of Theorem 5.9, we can construct a connected 

graph (E,V) for N , where V is the set of all vertices corresponding to 
ex 

t 1 2 N , and E is the set of all arcs in the graph. Given x , x E N the 
ex ex 

( 1 2 ) h' h 1 d 2 · i E if d 1 if l d 2 arc a x ,x w 1c connects x an x 1s n an on y x an x 

are adjacent. With this definition we see that the graph (E,V) is connected, 

In order to generate the set Nex' we can first find a basis J1 for 

anNex-point, if Nex ; 0. In view of Remark 5.8, if there is any other 

Nex-point, we must have anNex-basis J 2 adjacent to J 1• Thus we could use 

our results of this section to search for such a J 2• If there is no such 

J 2 , J 1 is the unique Nex-point. Otherwise, we consider all adjacent, but 

unexplored feasible bases to {J1 ,J2} to see if there is any other Nex-basis 

among them. If there is none, {J1 , J 2} represents the set Nex· Otherwise, 

we add a new Nex-basis to {J1 , J 2} and continue with the procedure until 

the entire set N is located. 
ex 

t 1 2 It is convenient, without confusion, for us to use x , x to represent 

both the associated bases J 1 , J 2 and the resulting basic feasible solutions 
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The method just sketched above can be carried out by computer. For 

more details of such development and examples, we refer the reader to 

[41]. 

We now turn to the problem of generating N from N • We shall briefly ex 

discuss one procedure. For a detailed development and examples we refer 

the reader to [41]. 

One can easily check that usually only a proper subset of H[N ] is ex 

nondominated. The decomposition theorem (Theorem 4.4) supplies an algorithm 

for the checking of nondominance, while Theorem 5.1 can be used to facili-

tate the checking. The following observations can be used to speed up 

the checking: 

(i) Our goal is to find a set of nondominated faces {F.} so that 
]. 

each Fi has a maximum dimension (that is, there is no other nondominated 

face Fk which properly contains Fi) and N = Thus our checking 

can start with then-dimensional face (that is X), then the (n-1)-dimen-

sional faces and so on. 

(ii) Fi is nondominated only when all of its subfaces are nondominated. 

Thus, once Fi is found to be nondominated, all of its subfaces (no matter 

what their dimensionality) can be eliminated from checking. Also once we 

find aD-point (say by the previous multicriteria simplex method), all the 

faces which contain this D-point must be dominated and can be eliminated 

from consideration. 

(iii) The incidence matrix {t .. } with i as the index of N points and 
l.J ex 

j, as the index of the faces of X (not necessarily nondominated) can be 

constructed to facilitate the checking. (Note t = 1 if the ith N -point 
ij ex 
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is contained in the jth face; otherwise, it is 0.) For a detailed 

development along this line, see [41]. 

6. APPLICATIONS AND EXTENSIONS 

We shall briefly discuss four topics in this section. The first 

topic is an empirical study using the Value Line's ratings which gives a 

vivid example of multicriteria decision making in real life. The next 

topic will focus on methods for obtaining domination cones. 

The third topic will be a classification of possible applications of 

domination structures and nondominated solutions. Finally we shall discuss 

some possible extensions of the concepts and some research problems. 

6.1. An Empirical Study of the SIP 

A number of books and articles have been devoted to stock market 

behaviors. Also a number of investment survey periodicals have been es­

tablished to "help" investors. The multicriteria concept has long existed 

in investment analyses (see [30] for instances). However, most literature 

focuses on either the one dimensional comparison model or the efficient 

(or Pareto optimal) model. A detailed discussion describing the use of 

domination structures in analyzing the problem and in reaching a good 

investment policy can be found in [38]. Here we shall briefly describe 

an empirical study reported in [38]. This will motivate our later 

discussion. 

The Value Line Investment Survey used to give weekly ratings for 

each stock under its survey according to four criteria (currently it gives 

ratings according to two criteria). These criteria were short-term 
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performance, long-term performance, dividend income and safety (the labels 

of the criteria changed from time to time). The rating score of each 

criteria varies over {1, 2, 3, 4, 5} Roughly speaking "1" means "best," 

"3" means "average," and "5" means "worst," while "2" and "4" mean "above 

average" and "below average" respectively. Value Line suggests that its 

reader (or potential investor) first determine a nonnegative weight for 

each criterion and then follow the additive weight method to select stocks 

in which to invest. According to Theorem 2.1, if we use strictly positive 

weights, the selected stocks will be nondominated with respect to the 

domination cone A~. If we use nonnegative weights, the selected stocks 

will be nondominated with respect to the domination cone A>= {dE R4 jd > O}. 

With this observation we classified each surveyed stock as an N-stock 

(nondominated) or a D-stock (dominated) using each of the two domination 

> > 
cones, A and A=. If the ratings and the suggestions of Value Line make 

sense and our selection of domination cones is appropriate, we would 

expect that the average "realized return" of the N-stocks would be better 

than that of the D-stocks. 

We made six classifications according to the ratings on January, 

March and May of 1968, June and August of 1969, and January of 197D. The 

selection of these months was restricted more by the availability of data 

than by any other consideration. 

Once N and D-stocks were separated, we selected a random sample from 

each of these groups of stocks (except that, since the N-stocks with re­

> 
spect to A= included only 10 to 20 stocks, we used the entire set). We 

then compared the average realized return rate of the samples from the N 
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and D stocks for each month of the next six to thirty months (depending on 

the rating date; for instance, for the ratings of January 1968, we compared 

data for thirty months, while for ratings of January, 1970, we compared 

data for only six months. This was due to a limitation of available data 

concerning realized return). The following observations are interesting 

to note: 
> 

(i) The number of N-stocks with respect to A= was very small (about 

15 N-stocks out of about 1200 total stocks), while the number of N-stocks 

with respect to A> was fairly large (about 700 N-stocks out of about 1200 

stocks). This is primarily due to the fact that each rating scale had 

only five discrete points. 

(ii) Since the convex combination of N -point is not necessarily an ex 

N-point, the sample from the N-stocks may not be a nondominated investment 

policy in SIP. However, the sample does test the performance of the N-

stocks as a "population." 

(iii) Three times out of six classifications with respect to A> and 
> 

two times out of six classifications with respect to A=, the samples from 

the N-stocks had a better average realized return rate than those from the 

D-stocks at each month over the entire comparison period (30 months or 6 

months etc. depending on the rating date). At all the other classifications 

the N-stocks did not have this kind of superior performance over the entire 

period of comparison. (In some months the sample from the D-stock group 

had a better average than that of theN-stock sample.) Thus we cannot 

conclude that the Value Line ratings and its suggestion yield useful infor-

mation for the SIP. To obtain conclusive assertions we need further 
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research. One would be interested iu seeing whether or not there is a 

domination cone so that the N-stocks selected according to the ratings and 

the domination cone would always out-perform the D-stocks. We have not 

yet made such a study. 

6.2. Methods for Finding Domination Cones 

One of the main advantages of domination structures is that thi.s 

method can incorporate available partial information concerning the de-

cision maker's preferences in the decision making process. To effectively 

use domination structures, one immediately faces the problem of selecting 

domination cones. Here we suggest four possible ways to resolve this 

problem. 

(i) A direct method: we follow the definition of domination factors 

and find the largest collection of such factors, we then use this collec-

tion for the domination cone. 

(ii) An indirect method: we use the additive weight method or bounds 

on the directions of indifference among the criteria. From Theorem 2.1 

and Remark 2.1, once we are given bounds for the weight vectors, we can 

construct a domination cone, A, so that the solutions from the additive 

weight method will be contained in Ext [YIAJ. Thus we can construct 

domination cones by knowing bounds for the weight vectors. Observe that 

Y = {y!A·y = c} is orthogonal to A. Once A is specified, Y is specified 
c c 

as well. Note that Y is the isovalued plane in Y with respect to the c 

function A"Y· 
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direction of indifference with respect to the function A'Y· That is, 

1 1 2 1 
A'y = A'Y + A'(a(y - y )) for any scalar of a. This essentially says 

that if the components of y are substituted according to the rate repre-

2 1 sented by y - y , the value of A'Y will be unchanged. Note that Y has 
c 

t-1 dimensions. Once we can specify t-1 independent vectors of the di-

rection of indifference then we can generate Y • As a consequence A which 
c 

is normal to Y can be specified. From this point of view by specifying 
c 

the bounds for the directions of indifference, we can locate corresponding 

bounds for the weights and then find the associated domination cone. Note 

that in constructing the directions of indifference, we can select one 

component of y and compare it one at a time with the remaining components 

fixed. Thus the construction of the directions of indifference is not as 

difficult as it may first appear to be. 

(iii) A statistical method: in decision making, one may have a well 

defined concept such as utility, satisfaction, welfare, etc., as the major 

goal. However, such major goals are very difficult to measure. We may 

use some subgoals or criteria to measure such a major goal. For instance, 

in SIP, we may use the realized return in the future (or a specified 

period) as our major goal and use the ratings or measurement of f 1 and f 2 

(for safety and expected return say) to measure the major goal. Suppose 

that we write the realized return r(x) of the policy x as 

(6.1) 

where a', Si, Sz are unknown constants; f 1 (x) and f 2 (x) are two indices 

as the measurements of the two subgoals for x and E is a random variable, 
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2 independently and normally distributed with mean = 0 and variance = a . 

Observe that (6.1) essentially is a linear multiregression model. 

Deleting x from the equation and using t as the index of samples, we get 

r =a' + (3'f + (3 1 f + e: t 1 lt 2 2t t (6.2) 

By the least square method, we can use samples to estimate a', (3i, and 6z· 
Denote such estimators by a, b1 and b2 respectively. It can be shown 

that (b1,b2) has a bivariate normal distribution with a known covariance 

matrix and means equal to ((3i, (32)· Furthermore, by preassigning a pro­

bability of confidence, say 90%, we could find an ellipse in (b1 , b2) 

space so that we have 90% confidence that ((3i, (32) will lie in the ellipse. 

(See Figure 4.) 

Figure 4 

Ellipse with 
90% confidence 
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Observe that we have decomposed the uncertainty of the realized 

return r(x) into four parts. However, the unknown paramater ~· and ran-

domness of e are independent of our decision. That is, no matter what x 

is, we have to bear the uncertainty of the unknown parameter ~· and 

randomness of e. With this understanding, we may note that to maximize 

the realized return r(x) under uncertainty is equivalent to maximize 

Sif1 (x) + S2f 2 (x) with a certain confidence that Si and S2 will lie in 

a specified ellipse. 

Observe that when Si and S2 are fixed, Sif1 (x) + Sif 2(x) is linear 

in f 1 and f 2 • In figure 4, the ellipse E has a 90% chance of containing 

the true values of Si and Si· Let OA, OB be the two tangent lines to E. 

We see that the cone A* bounded by AOB forms the minimum convex cone con­

taining E. Since E c A* and Prob {(Si, Sz) e E} = 0.9, we see that 

Prob {(Si, S2) e A*}~ 0.9. Thus the set U {Y 0 (A) lA e A* A~ 0} has at 

least a 90% chance of containing the true "optimal" solution. (Recall that 

Y0 (A) is the set of all maximum solutions of A"Y over Y.) Let A0 be any 

convex cone contained in {0} U Int A (note that A**= A). Then by 

Theorem 2.1, we see that there is at least a 90% chance that the true 

optimal decision is contained by Ext [YjA 0 ]. 

The above procedure of using linear regression models to find 

domination cones clearly could be extended to more general cases. We 

shall not pursue this extension here. Some precautions are worth men-

tioning. First, we linearly decompose the total uncertainty into several 

parts. Those parts which are unrealted to the decision variables (i.e., 

~ and e) although we do not consider them in the finding the domination 
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cone, could actually affect our main goal. Next, if we use historical 

data (or rating) to estimate el and e2' we must check whether or not el 

and e2 are stable (time homogeneous). If they are not stable, certain 

adjustments are needed. Finally we use the regression model to estimate a 

domination cone which in turn is used to screen out some good alternatives, 

rather than to find the optimal decision. The adaptive procedure to be 

described later may be useful in finding the final decision. Observe that 

if we on one hand make ratings (f1 , f 2) for each stock, on the other hand 

we make decisions based on the estimated domination cone and on the ratings, 

then we could use the feedback concept (by checking backward) to measure 

the efficiency of the rating. The more stable and the larger the result­

ing domination cone is the better. This feedback checking is not only 

valuable for future decision making but also is good information for 

management. Later we shall discuss this concept further. 

(iv) Other Methods: The successful application of a mathematical 

tool to a practical problem is certainly an art. It requires a thorough 

understanding of the problem and the available tools. The application of 

domination structures certainly cannot escape this requirement. Obtaining 

a suitable domination cone for a practical problem often depends on how 

well we understand the problem. For instance, in SIP, if we consider 

interest rates for borrowing or lending money, we might find that a great 

deal of inferior decisions can be eliminated and a "minimum" domination 

cone can consequently be constructed. In order to see this point, let us 

use f 1 (x) Tstandard deviation of the return of x and f 2(x) = the expected 

return of x as two criteria for the SIP. Now suppose we use policy x 
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with an investment aM, a ~ 0. (Thus the investment distribution is 

(aMx1, •.• , aMxn).) If a> 1 we have to borrow (a-l)M and to pay interest 

(a-l)RM, where R is the interest rate for borrowing money. If a < 1, we 

could put (1-a)M in the bank and gain interest (1-a)rM, where r is the 

interest rate for "lending" money. The two criteria in terms of a and x 

are then given by 

{ a(f 2(x)-rM) 

a(f 2(x)-RM) 

+ rM for 

+ RM for 

a r:: [0,1] 

a > 1 

(Note fj(a,x), j = 1, 2, are the measurements for fj when aM is to be 

invested according to the policy x, and borrowing and lending money are to 

be executed.) 

Now suppose that Y is as in Figure 5. 

Expected Return 

RM 

rM 

---------------~~--+ safety 
- Standard deviation of returns 0 

FigureS 
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From f.(a,x), by introducing a, the set bounded roughly by the curve 
J 

(F,C,D,rM,E) is obtainable. Now suppose that the investor is a risk-
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avertor (that is, when f 2 is fixed a higher f 1 is more preferred). Then 

in the enlarged criteria space, he would consider only those policies 

which yield the points on the curve (F,C,D,rM). However, these are the 

solutions of the additive weight method with the additive weights being 

bounded by the cone which is generated by Al and A2, where Al is normal 

to the line [C,RM] and A2 is normal to the line [D,rM]. 

According to Theorem 2.1, we then can construct its related domination 

cone. 

6.3. Some Forms of Applications 

In this section we shall briefly describe some applications of 

domination structures. Instead of describing the details of specific 

multicriteria decision problems, we shall briefly indicate the general 

form of several applications. 

(i) Multicriteria decision making with completely known domination 

structures. Since the final decision must be a non-dominated solution, 

we can focus on the nondominated solutions. The set of optimal weights 

and/or the satisfying levels (described in Section 2 and 3) for each non-

dominated solution can be used to help in reaching the final decision. 

(ii) Multicriteria decision making with partially known domination 

structures. This is a very common situation in many decision problems. 

In Section 6.2 we described several methods for obtaining the related 

domination cone. The following flow chart describes an iterative pro-

cedure which can be used to reach a good decision. 
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~ NO 

(5) 

Let the decision maker 
use the last "feasible 
set" and related in­
formation to make his 
final choice. 

... , 
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(1) 

Observe preferences (Partially 
known or not well defined) on ~~~--~ 
the "feasible" choices for the ' 
final decision. 

' (2) 

With this information can the 
"feasible set" be reduced to 
a smaller one? 

'' YES 

(3) 

Reduce the "feasible set" 
to a smaller one. 

, ... 

(4) 

Final Decision obtained? 

II YES 

(6) , 
Stop J \ 

NO 
~ 

7 
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Box (1). We can use the domination structure defined on the 

"feasible set" as information concerning the decision-maker's preferences. 

The methods described in Section 6.2 will be useful for obtaining the 

desired domination cones. 

Box (2), (3) and (5). Let Y be the feasible set and A= {D(y)IY e Y} 

for Box (1). Is Ext [YIAl smaller than Y? If it is, we use Ext [YIAl as 

our new "feasible set", go to Box (4), continue our process; otherwise, we 

go to Box (5) and stop. In Box (5), we could give the set of optimal 

weights and satisfying levels of each nondominated solution to the 

decision-maker. (See Section 2-3.) 

Box (4) is clear. However, one may use the set of optimal weights 

and satisfying levels for each nondominated solution to help in reaching 

the final decision. 

(iii) Decision Making under uncertainty. In statistical decision 

analysis, one usually assumes that the payoff of each decision depends on 

the state of nature. Suppose that the number of states of nature is finite. 

Denote the states by 1, 2, ••• , and denote the payoff of decision x at 

state i by fi(x). Then, clearly, we can convert the problem into our 

multicriteria decision model. Suppose that we have some partial informa-

tion on the distribution of the states and suppose that we want to maximize 

the expected payoff. Then according to (ii) of Section 6.2 we can derive 

a related constant domination cone. Otherwise, we can begin with the 
< 

domination cone, A=, and find the related nondominated solutions together 

with their sets of optimal weights. Note that we can normalize the weight 

vector (by LAi = 1). Then the set of normalized optimal weight vectors 
i 
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for each nondominated solution x can be interpreted as the set of pro­

bability distributions on the states of nature for which x yields the 

maximum expected payoff (with respect to the distribution). 

(iv) Sensitivity Analysis and Parametric Programming. Suppose we 

have a single objective function which can vary throughout some given 

range. We may first select one representative objective function and find 

its maximum solution. We then study how sensitively this maximum solution 

responds to variations in the objective function. This is so called 

sensitivity analysis in mathematical programming. When the objective 

varies with some parameters, it is also called parametric programming. 

Clearly, the range of the objective function can be specified without loss 

of generality by a cone. We see that our domination structure analysis 

is very closely related to sensitivity analysis and parametric programming. 

Our results certainly can shed light on the area of sensitivity analysis 

and parametric programming. In [42], we discussed how the multicriteria 

simplex method can be used to perform a sensitivity analysis and to solve 

parametric programming problems in the linear case. We shall not repeat 

it here. 

(v) A Feed Back Management Control Model. As indicated in Section 

6.2, we can use a statistical method to estimate the domination cone for 

the SIP. Thus, given the ratings and the domination cone, we can make our 

selection from the set of the nondominated stocks. We can then compare 

the performance of the N-stocks and D-stocks. This will give us a feedback 

guidance to see if our rules for ratings and selecting domination cones 

are meaningful. If they are, we can continue using them or improving them. 
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Otherwise, a change in the rules for the ratings and selecting the domina­

ation cone must be made. This feedback process can be adopted for periodic 

feedback over an extended time period. 

(vi) Studying the assumptions which are made by various solution 

concepts. We have partially discussed this topic in Section 1. A detailed 

treatment on a particular problem can be found in [39]. 

6.4. Extensions and Further Research 

We have described domination structures for multicriteria decision 

problems. Several extensions are possible. In [2], we extended there­

sults to domination structures in which each D(y) is a convex set rather 

than a convex cone. In [40], necessary and/or sufficient conditions for 

nondominated controls and cone convexity are reported. Once of the most 

important developments is to actually apply the results to practical 

decision problems. Those applications mentioned in Section 6.3 needed to 

be carried out too. K. Bergstresser and the author are working on the 

application of domination structures to n-person games. Some partial 

results have been obtained. We shall report the results when the research 

is completed. 

7. Acknowledgement 

It is a great pleasure for me to thank K. Bergstresser for his care­

ful reading of the manuscript and some helpful suggestions. My gratitude is 

also extended to Mrs. M. Krause for her careful typing of this article. 



276- P.L. Yu 

REFERENCES 

l. ARROW, K. J. , Social Choice and Individual Values, Cowles Comission 

Monograph No. 12, 1951. 

2. BERGSTRESSER, K., CHARNES, A. and YU, P. L., Generalization of 

Domination Structures and Nondominated Solutions in Multicriteria 

Decision Making (to appear in J. of Opt. Theory and Application). 

3. BLAQUIERE, A., GERARD, G., and LEITMANN, G., Quantitative and 

Qualitative Games, Academic Press, New York, New York, 1969. 

4. CHARNES, A. and COOPER, W. W., Management Models and Industrial 

Applications of Linear Programming, Vols. I and II, John Wiley and 

Sons, New York, New York, 1971. 

5. DACUNCHA, N. 0., and POLAK, E., Constrained Minimization Under Vector­

Valued Criteria in Finite Dimensional Space, Journal of Mathematical 

Analysis and Applications, Vol. 19, pp. 103-124, 1967. 

6. FERGUSON, T. S., Mathematical Statistics, A Decision Theoretic Approach, 

Academic Press, New York, New York, 1967. 

7. FISHBURN, P. c., Utility Theory for Decision Making, John Wiley and 

Sons, New York, New York, 1970. 

8, FREIMER, M., and YU, P. L., An Approach Toward Decision Problems with 

Multi-objectives, University of Rochester, Center for System Science, 

Report No. 72-03, 1972. 

9. FREIMER, M., and YU, P. L., The Application of Compromise Solutions 

to Reporting Games, Appears in Game Theory As A Theory of Conflict 

Resolution, edited by Anatol Rapoport, D. Reidel Publishing Company, 

1974. 



Domination Structures and Nondominated Solutions 277 

10. FREIMER, M., and YU, P. L., Some New Results on Compromise Solutions, 

University of Rochester, Graduate School of Management, Series No. 

F7221, 1972. 

11. FREIDMAN, A., Differential Games, John Wiley and Sons (Interscience 

Publishers), New York, New York, 1971. 

12. GEOFFRION, A. M., Proper Efficiency and The Theory of Vector Maxi­

mization, Journal of Mathematical Analysis and Applications, Vol. 

22, pp. 618-630, 1968. 

13. GEOFFRION, A.M., DYER, J. S., and REINBERT, A., An Interactive 

Approach for Multicriterion Optimization with an Application to the 

Operation of an Academic Department, Management Science 19, No. 4, 

1972, 357-368. 

14. HO, Y. C., Final Report of the First International Conference on the 

Theory and Applications of Differential Games, Amherst, Massachusetts, 

1970. 

15. HOUTHAKKER, H., Revealed Preference and the Utility Function, 

Economica Vol. 17, 1950, pp. 159-174. 

16. ISAACS, R., Differential Games, John Wiley and Sons, New York, New 

York, 1965. 

17. ISAACS, R., Differential Games: Their Scope, Nature, and Future, 

Journal of Optimization Theory and Applications, Vol. 3, pp. 283-

295, 1969. 

18. LEITMANN, G., and Schmitendorf, W., Some Sufficient Conditions for 

Pareto-Optimal Control, Journal of Dynamical Systems, Measurement 

and Control, Vol. 95, No. 3, 1973. 



278 P.L. Yu 

19. LEITMANN, G., ROCKLIN, S., and VINCENT, T. L., A Note on Control 

Space Properties of Cooperative Games, Journal of Optimization 

Theory and Applications, Vol. 9, pp. 279-290, 1972. 

20. LUCE, R. D., and RAIFFA, H., Games and Decisions, John Wiley and 

Sons, New York, New York, 1967. 

21. MACCRIMMON, K. R., An Overview of Multiple Objective Decision Making, 

Appears in Multiple Criteria Decision Making, edited by J. Cochrane 

and M. Zeleny, University of South Carolina Press, 1973. 

22. MANGASARIAN, 0. L., .Nonlinear Programming, McGraw-Hill, 1969. 

23. RAIFFA, H., Decision Analysis, Addison-Wesley Publishing Company, 

Reading, Massachusetts, 1968. 

24. RAIFFA, H., Preferences for Multi-Attributed Alternatives, The Rand 

Corporation, Memorandum No. RM-5868-POT/RC, 1969. 

25. RAPOPORT, A., N-Person Game Theory--Concepts and Applications, The 

University of Michigan Press, Ann Arbor, Michigan, 1970. 

26. ROY, B., How Outranking Relation Helps Multiple Criteria Decision 

Making, Appears in Multicriteria Decision Making, edited by J. L. 

Cochrane and M. Zeleny, University of South Carolina Press, 1973. 

27. SALUKVADZE, M. E., Optimization of .Vector Functionals, I, Programming 

of Optimal Trajectories (in Russian), Avtomatika i Telemekhanika, 

No. 8, pp. 5-15, 1971. 

28. SALUKVADZE, M. E., Optimization of Vector Functionals, II, The 

Analytic Construction of Optimal Controls (in Russian), Avtomatika i 

Telemekhanika, No. 9, pp. 5-15, 1971. 



Domination Structures and Nondominated Solutions 279 

29. SALUKVADZE, M., On the Existence of Solutions in Problems of 

Optimization Under Vector-Valued Criteria, Journal of Optimization 

Theory and Applications, Vol. 13, No. 2, 1974. 

30. SHARPE, W., Portfolio Theory and Capital Markets, McGraw-Hill, 1970. 

31. STADLER, W., Preference Optimality (also his lecture notes for this 

seminar). 

32. STALFORD, H. L., Criteria for Pareto-Optimality in Cooperative 

Differential Games, Journal of Optimization Theory and Applications, 

Vol. 9, pp. 391-398, 1972. 

33. VINCENT, T. L., and LEITMANN, G., Control-Space Properties of 

Cooperative Games, Journal of Optimization Theory and Applications, 

Vol. 6, pp. 91-113, 1970. 

34. VON NEUMANN, J., and MORGENSTERN, 0., Theory of Games and Economic 

Behavior, Princeton University Press, Princeton, New Jersey, 1947. 

35. YU, P. L., A Class of Solutions for Group Decision Problems, 

Management Science, Vol. 19, No. 8, 1973. 

36. YU, P. L., Cone Convexity, Cone Extreme Points and Nondominated 

Solutions in Decision Problems with multiobjectives, Journal of 

Optimization Theory and Applications, Vol. 14, No. 3, Sept., 1974. 

37. YU, P. L., Introduction to Domination Structures in Multicriteria 

Decision Problems, Appears in Multiple Criteria Decision Making 

edited by J. Cochrane and M. Zeleny, University of South Carolina 

Press, 1973. 

38. YU, P. L., Nondominated Investment Policies in Stock Markets 

(Including an Empirical Study), Systems Analysis Program F7222, 



280 

University of Rochester, 1973. 

39. YU, P. L. and LEITMANN, G., Compromise Solutions, Dgmination 

Structures and Salukvadze's Solutions, Journal of Optimization 

Theory and Application, Vol. 13, No. 3, March, 1974. 

P.L. Yu 

40. YU, P. L. and LEITMANN, G., Nondominated Decisions and Cone Convexity 

in Dynamic Multicriteria Decision Problems, Journal of Optimization 

Theory and Applications, Vol. 14, No. 5, November, 1974. 

41. YU, P. L. and ZELENY, M., The Set of all Nondominated Solutions in 

the Linear Cases and a Multicriteria Simplex Method, Journal of 

Mathematical Analysis and Applications, Vol. 49, No. 2, Feb. ]975. 

42. YU, P. L. and ZELENY, M., On Some Linear Multi-Parametric Programs, 

CSS 73-05, Center for System Science, University of Rochester, 

Rochester, New York, 1973. 

43. ZADEH, L.A., Optimality and Non-Scalar-Valued Performance Criteria, 

IEEE Transactions on Automatic Control, Vol. AC-8, pp. 59-60, 1963. 

44. ZELENY, M., Linear Multiobjective Programming, The University of 

Rochester, Graduate School of Management, Ph.D. Thesis, 1972. 



ON SOME BROAD CLASSES OF VECTOR OPTIMAL 
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1.- INTRODUCTION. 

We shall consider situations in which some "decision maker" has 

to choose, in a set of feasible decisions, a decision which may be 

considered as the 11 best 11 according to some finite set of criteria. 

To be more precise, and using for vector comparisons the same no­

tations as in Stadler (p.128 in this volume), the following will be 

the 11 data'' of our problema 

- a 11 feasible set" X in Rn, which we shall usually suppose to be 

given bya 

X • { x I g(x) ~ 0} 

where g maps 

-an m-vector valued objective function f • (f1 , f 2 ••• fm), (with 

m> 1) defined on some open set containing X and whose components 

we tcy to maximize. 
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Notice that we don 1 t make for the moment any 11 a priori 11 as­

sumption on the way in which the best is defined out of the objective 

function. As it 'Nill be seen in the sequel, this also implies that no 

further hypothesis is made on the real structure of the decision 

rr.aker: it may be a single person considering different aspects {or 

11 at·tributes 11) of the consequences of his decisions, or even a group. 

if agents, each one of them contributing to such a choice(in a coope­

rative, or noncooperative, or indipendent way, or in any other mixed 

form) according to one (or more) objective (or 11 utility", in such a 

case) function. 

Since there are more than one objective functions, but there is 

no way of getting from them an unambiguous definition of 11 best 11 , 

our original problem may be seen as resulting from the union of two 

different subproblems: the definition of the best and the search for 

it. We shall usually refer to the first phase as the 11 aggregating" 

one, and to the second as the 1 ~aximizing 11 one. 

In Part I of the present contribution we shall critically re­

view some general concepts and solutions concerning the aggregation 

problem, and in Part II we shall give some new results for the maxi­

mum problem in very wide framework. 

In Part I we shall put special enphasis on the solutions for 

the aggregation problem proposed by authors mainly dealing with the 

maximum problem. In fact, as we shall see, the results for the latter 

problem strongly depend on what solution has been accepted for the 

former one. 

Roughly speaking, the literature dealing with situation similar 

to ours may be divided into two main groups, depending on whither the 

ar,gregation or the maximum apsect are mainly stressed. Our interest 

in scanning the literature is somehow intermediate between the ones 
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of such two groups, since we look for the relations between them. 

This is why we shall skip out the whole wide body of the so-called 

''decision making theory". In fact, its main concern consists in 

proposing some meaningful aggregation procedure that is also accept­

able from a computational point of view, or in suggesting some 11 it­

erative'' method leading to the best solution by successive approx­

imations of what is best, where at each step both the aggregation 

and the maximization phases are used. In the former case no relation 

between aggregation and maximization is explored at all, whereas in 

the latter such a connection is too strict to show its meaning in 

a fully general way. (For an exhaustive introduction to the deci­

sion making theory literature, see for example Roy I97I, Uac Gr.i.mmon 

I973, Keeney and Raiffa I975). 

Furthermore, it must be stressed that we shall not give an ex­

haustive review of the many definitions of ''best" that have been 

proposed (for such a review, see for example Yu, this volume) but we 

are interested only in making some considerations about a narrow set 

of definitions, which are the most relevant ones from the point of 

view of our general formulation. 

The original aspects of the present contiibutions are contain­

ed only in Part II. We use there from the beginning the concept of 

optimal decisions as the ones "non dominated'' with respect to a 

cone, according to Yu, and moreover we clearly distinguish among 

(globally) 11 weakly" , 11 ordinarily" and "strictly" non dominated 

decisions x0 • For each kind of optimality Ne define the corresponding 

1~ocal 11 version; and the 11 differential'" one, obtained by substitu-
o ting to f and g their linear approximations at x • 

Since, as it is intuitive, from a numerical point of view the 

conditions for differential optimalities are the easiest to be check-
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ed, the practical interest is clear of finding sufficient conditions 

on f and g for a differentially optimal decision x0 (of any kind) to 

be also locally {and possibly globally) optimal. The search is then 

for the maximal relaxation of such conditions, which is carried out 

in Part III,3 and in Part II,4, using two different approaches. In 

Part II,3 the weakest conditions are also given, which permit to in­

fer each one of the above defined optimalities from each other oneo 



PART I 

I.l.- GENERAL CONSIDERATIONS ON THE CONCEPT OF PARETO OPTD!:ALITY. 

The most usual definition of " best 11 is the definition of the 

so-called 11 Pareto optimality" a a decision x0 is Pareto-optimal if 

no feasible x' exists such that f(x') > f(x0 ) (Later on, this type 

of Pareto Optimality will be refered to as 11 ordinary" Pareto opti­

mality). 

The above definition owes its name to the economist Wilfredo 

Pareto, who used it (Pareto 1896) in the general fromework of his eo~ 

nomic theory. Since then, such a definition has been widely used and 

investigated, not only in the economic area (see Koopman 1951, Karlin 

1959, Debra~ 1959, etc.), but also as a quite general concept of so­

lution for mathematical programming problems (see Kuhn and Tucker 

1951, Geoffrion 1966, 1967 a, 1967 b, Chu 1970, Smale 1973, 1974, Wan 

1975), game theoretic and control problems, both in the static (see 

for example Luce and Raiffa 1957, Zadeh 1963, De Cunha and Polak 1967, 

Schmitendorf 1973) and in the dinamic case (see for example Chang 

1966, Storr and Ho 1969 a, 1969 b, Vincent and Leitmann 1970, Rekasi­

us and Schmitendorf 1971, Leitmann, Rocklin and Vincent 1972, Blaqui! 

re, Juricek and Wiese 1972, Haurie 1973, Leitmann and Schimetendorf 
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1973, Leitmann 1974, Haurie and Delfour 1974, Leitmann this volume, 

Blaquiere this volume). 

It is interesting to define the Pareto optimal decisions by 

first introducing the binary 11 Pareto preference-or-indefference re­

lation" R , defined on the cartesian product f(X) x f(X) &s fol-

lows: 

2 
y 

and then characterizing the Pareto optimal decisions as the ones map­

ped by f into its maximal set. 

According to the current terminology 

Birkhoff 1948 ), y 0 belongs to the maximal 

the domain of R exists such that (y', y0 ) 

(see for example Sen 1970, 

set of R of no y' in 

is in R and (y0 , y 1 ) 

is not. (In such a more general fromework, the relation R may be 

seen as the result of the aggregation phase, implicity defining the 

best as the counterimage, by f, of its maximal set). 

In an equivalent way, defining the 11 binary Pareto preference" 

relation P , by 

<l,/)t'P ~ <l,y2)tR,(/,l>.tii 
0 - -y belongs to the maximal set of R iff no y' is in the domain of R 

such that (y 1 ,y0 }tP, (that is, is prefered to y0 ). 

The definition of 11 best" as Pareto optimal is somehow the 

most general one for our problem as expressed in the introduction in 

the sense that it may be considered as the smallest requirement one 

can put on a 11 best 11 decision if no information is provided about 

the 11 preference structure" in our problem, except the objective 

function. In fact, each component of f is considered as having the 

same importance in determining whether a given decision is optimal or 
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not. 

For a deeper understanding of the above fundamental statement 

let us refer to each component of the objective function as the util­

ity function of a distinct 11 agent" (we use such a 11 personalizing" 

interpretation just for the sake of simplicity in exploring the main 

features of Pareto Optimality; all conclusions, however, still hold 

in a general formulation). Then the above definition of Pareto pref­

erence-or-indefference relation may be seen as implying same kind of 
0 

cooperation among the agents, since according to it a decision x is 

preferred to another one x' if the utility function of no agent de­

creases passing from x0 to x•, and at least one of them increases. 

In other words, each agent is willing to give up any of his possible 

marginal gains of these could be achieved only at the expenses of 

someone else. Consider now the following method to test the optimal­

ity of a given feasible decision x0 : each agent (say the i-th ) in­

dicates tWO Sets: the set ciO Of feasible deciSiOnS WhiCh are II pr~ 
X 

ferred or indiffer.ent 11 to x0 with respect to his personal utility 

function, that is 

i 
and the set I 0 of feasible decisions which are 11 indifferent" to 

0 X 
x , that is 

I\•{xlxtX,f'1(x)=fi(x0 )}. 

X 

Then 
0 

X is Pareto optimal if 

0 
1 

Qi 
0 

X 

• I,l(l) 

(where the intersections are extended to all indices i•l •.•• m).Observe 
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that x0 £ Ii , for all i. Furthermore, 
xo 

c!o :::::> I~0 , for. all i. The aboVe consideration shows that, in all 

5ituations, each agent has the right to declare his desires and to 

require that they contribute to determine the optimality of 0 

X ' 

whatever they are. In this sense, we may say that each agent has 
0 equal rights, whatever is the set of the decisions preferable to x 

for him. Clearly, such an 11 equality 11 among the agents does not 

exclude that a 11 

reduces to 
0 

X 

vetoing 11 situation may happen, for example if Ci 
0 

X 
for some agent: in fact, in such a case the Pareto 

optimality of x0 is guaranteed (since both sides of equation I.~(l)re 
0 . 

duoe to x ), WJ.thout any further consideration for the other agents 

preferences. The above 11 equality" must be therefore intended in the 
i i 

restricted sense that no C (nor I may be disregarded 11 a prio-
xO xo 

ri", that is because of its shape. The possibility for a 11 vetoing 

situation" may be then seen as an unavoidable consequence of our 

11 equality principle 11 , which implies the conservative principle of 

requiring unanimity for deciding that decision is " bet cer 11 than 

another one, thus allowing any single agent to let a decision become 

Pareto optimal. 

An interesting consequence of the equality principle as stated 

above is the so called no intercomparability among the components of 

the objective function, which means that the relative amplitudes of 

the possible marginal gains and losses of the agents do not decide 

about the Pareto optimality of a given decision. In fact the equality 

principle implies that also the shapes of the images of the sets Ci 
xo 

on the reals through fk for every pair i, k are not a priori deci-

sive about the Pareto optimality of given decision x0 • Indeed 
i 0 

f (C ) - fk(x } is the set of possible marginal gains for the i-th 
k 0 

X 
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player if i • k, whereas it represents the set of marginal gains (or 

losses), of the k-th agent if he would accept to depart from the de-

cision 
0 

X according to the preferences of the i-th agent, if i ! k. 

Clearly, whereas the equality principle implies non-intercomparabil­

ity, the viceversa is in general not true, since the equality requi£ 

es that no property of Ci 0 haS any a priori relevance for deciding 
X 

about optimality,whereas the no intercomparability deals only with 

images through fk. An other fundamental property of Pareto optimal­

ity may be seen as a consequence of the equality principle: its inVa£ 

iance under any monotonic transformation of the objective function. 
0 

That is, if x is a Pareto optimal decision with respect to a given 

objective function f, it is also Pareto optimal with respect to f', 

if f' is obtained from f by monotonically transforming each of 

its components; moreover, such a transformation need not be the same 
i i .. for all components. In fact, neither C nor I are mod1f1ed by 
xo 0 

• X such a transfol·mation. The above property 1s often referred to by 

stating that Pareto optimality has a 11 purely ordinal" character, 

since it is influenced only by the ordering which the 

on the set of the feasible decisions. 

I. 2.- DI ST INC'l'I ONS IN PARETO OPTICALITY: IMPROPERNESS 

f' s 
1 

induce 

The search for alternative definitions of what is 11 best" is 

motivated by some drawbacks suffered by the concept of Pareto opti­

mality. All of them may be seen as consequences of its generality, 

which we characterized by the fact that it obeys to the equality 

principle, and therefore no intercomparison holds. 

To use a someway sugeestive comparison, if no intercomparison 
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is accepted, the situation is similar to the one in wich, in the pre~ 

ence of a given number of different possible events, one feels temped 

to ascribe an equal rrobability to each of them. Such an attitude, 

even if questionable, may be seen in practice at least as good as any 

other one if no further insight may be obtained about the meaning and 

the structure of the definite problem we are dealing with. 

Other, more practical, considerations stem the fact that the 

effective usefulness of determining the set of all Pcreto optimal 

points (or, simply, the Pareto set) is often quite short to give any 

valuable suggestion on what decision has to be ultimately taken. In 

fact, us we shall see, there is no way of :inding any convincing 

criterion to compare each other two Pareto optimal points without in-

traducing among the components of the objective function some aggrega_ 

tion rule which must be sharper than the simple unanimity rule, hence 

implying some intercomparison. Therefore, unless the Pareto set is a 

singleton, and if intercomparison is not allowed, no reason may be 

derived from the given criteria to select the particular decision to 

be implemented. 

To justify the above statement, suppose that the Pareto set of 

a given multicriteria optimization problem is taken as the feasible 

set for a " second level 11 scalar criterion optimization problem, as 

some authors suggest (see Zadeh 1963). Clearly the second level cri-

terion cannot have the same relevance as the first level criteria, 

since otherwise it would be used with them in the first problem. By 

the same argoment, the second level criterion must somehow depend on 

the shape of the Pareto set of the first problem, hence on the first 

level criteria. Suppose now, for the sake of simplicit~, that the se­

cond level criterion is represented by the scalar-valued function f 1 
0 

we proved that it must 11 depend" on the f! s. That is, there must 
J. 
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be a map f~ such that f 0 ~ f~ (f1,f2, ••• fm). Clearly, f~ implicity 

represents the way in which the first-level objective functions f. are 
l. 

aggregated in order to give f • The conclusion may then be drawn that 
0 

some intercomparison of the f 1 s is implied by taking the Pareto set 
i 

as the feasible set for a second level optimization problem. 

The last result is a fundamental one to fully understand the 

rest of the present section in which some distinctions are presented 

that have been proposed for the definition of Pareto optimality. 

A first example is the distinction, introduced by Kuhn and 

Tucker in their pioneering paper (Kuhn and •rucker 1950), between" pro-

per" and " improper" Pareto optimal points. 

Following the definition they give, a Pareto optimal point 
0 

X 

is proper if there is no feasible direction in which the (first-order) 

directional derivatives of the objective functions are neither nonne­

gative nor simultaneously equal to zero. That excluding improper Pa­

reto optimal points implies objective inter-comparison is explicity 

admitted by the authors, since they propose the argument (further de­

veloped by Klinger in (Klinger 1964) and(Klinger 1967))that improper 

points enjoy the " undesirable property" that there is a direction 

in which a possible first-order increase of (at least) one component 

of the objective function corresponds to a higher order decrease of 

some other. Clearly, the preference comparison introduced by Kuhn and 

Tucker might be considered of only minor relevance, since it does 

not concerny the numerical values of the objective functions, but only 

the magnitude order of their rate of increase. In fact, improperness 

is invariant under (positive) linear transformation of the objective 

functions. On the other hand, however, a fundamental remark should be 

made about the concept of properness: only first-order derivatives are 

considered. This is the reason wby nonproper Pareto optimal points 
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always concern a first-order marginal gain against higher-order mar­

ginal losses, whereas it seems to be equally "undesirable" that 

higer-order infinitesimal marginal losses may in general prevent 

lower-(not necessarily first) order infinitesimal marginal gains. 

Following the definition of Kuhn and Tucker, the last situation produ~ 

es either a nonproper or a proper Pareto optimal point depending on 

whether the possible gain is respectively of the first-order or not. 

It might be obvious that in most oases such a discrimination makes 

no sense, since not only the magnitude order of the objective funot~ 

ions rates of increase are compared, but also the effective value of 

one of them must be considered. This makes improperness not invariant 

not only if a strictly monotone transfo1·mation is applied to any 

oo~ponent of objective function (there is no hope for this, since pref 

erenoe interoomparison is necessarily implied) but also if some stric­

tly monotone transformation is applied to all components of the objeo-

tive functions. 

To overcome this drawback, Geoffrion proposed,in Geoffrion 196~ 

a new definition, in which a proper point is characterized by the 

property that the ratio of the possible marginal gain and the possible 

marginal loss with respect to any two elements of the objective func­

tion is bounded. To be more precise, x 0 is a proper Pareto optimal 

point in Geoffrion's sense if there exists a scalar M > 0 such that, 

for each 1, the relation 

f 1(x)- fi(x0 ) 
I.2,(1) 

fj(x0 ) - fj(x) 

holds for some j such that fj(x) < t 3(x0 ), whenever x £ X and such 

that f 1(x) > f 1 (x0 ). 

The n global" character of Geoffrion 1 s definition must be 
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stressed, because it produces much more non proper points than one nrlght 

expect by considering it as an obvious generalization of the "unde­

sirable property" • The reason is that to the second formulation of 

the " undesirable property" it was implici ty given only a 11 local" 

validity, in the sense that only infinitesimal variations of the 

objective functions were considered. (Obviously, the term " local" 

is used here with respect to the objective space Rm ~ f(X)). 

Nevertheless, it is reasonable to extend the "undesirable 

property" to have a global validity by considering also arbitrarily 

large variations of the objective functions. It may therefore be for­

mulated as followsa it is desirable that for any Pareto optimal point 

there does not exist another feasible point giving a marginal gain 

for an element of the objective function and not giving a marginal 

loss of the same magnitude order for some other one. Then it is clear 

that improper Pareto optimality in the Geoffrion's formulation exactlY 

matches with global undesirability. 

If may be immediately observed that global undesirability is 

invariant under simultaneous strictly monotone transformations. 

As usual, objective functions concavity and feasible set con­

vexity guarantee that local properties become global ones. For non­

properness, this results from the fact that no concave function may 

tend to + oo in a finite point, whereas if it has a finite limit 

along any direction, it must be nondecreasing along that direction. 

Hence there cannot exist a Pare~o optimal point with marginal gains 

unbounded above whereas all marginal losses are bounded below. Remem­

bering that nonproperness is invariant under simultaneous strictly 

monotone transformation, we conclude that in the case of concave 

objective functions the properness condition cannot be violated be­

cause of the numerator unboundedness of the left-hand side of I.2,(1). 
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Before concluding our presentation of properness for Pareto 

optimal points, some considerations are appropriate concerning the 

validity of such a concept. First of all, it may be pointed out that 

whereas it is considerably hard formally characterize (and actual­

ly compute) the set of all Pareto optimal points in the most general 

case, all difficulties are drastically reduced, if the problem is re -

striated to proper Pareto optimal points (see Marzollo and Ukovich 

1974, 1975 versus Geoffrion 1967 b). Such&n useful simplification maJ 

he obtained if the principle is accepted that non proper Pareto op­

timal points are not to be considered as giving satisfactory decisions, 

as it is for the non-optimal ones. However, such an assumption does 

not seem to have general validity. 

Consider for example a point x in which the maximum is 

achieved of the i-th component of the objective function. Obviously, 

x is Pareto optimaljhowever, supposing that f. is derivable in it, 
l. 

its local properness does not longer depend on f 1 , unless some very 

special conditions are verified. 

Such an anomaly is produced by the fact that in i only agents' 

tendencies to move to increase their gains are considered in order 

to get properness, whereas i-th agent's aspiration not to move is 

absolutely disregarded. 

Again we see that properness does not consider all players 

agents• preferences with the some equity, thereby violating the equal­

ity p:rinciple. Clearly, most "ve'k>ing situations" are eliminated 

in such a way, but consider again the case in which the components 

of f are the utility functions for different agents: even if we 

suppose that they act in a cooperative w~, it might be hand to pe~ 

suade the i-th agent to give up sticking objeotive1 
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1.3.- MORE GENERAL DEFINITIONS OF OPTIY~LITY: NONDOMINATION. 

Once the principle is accepted that criteria intercomparison 

m~ be admitted at some extent, much broader generalizations of the 

concept of Pareto optimality m~ be presented, resulting for example 

in the definition of nondomination with respect to a cone, as it has 

been proposed by Yu (see Yu, this volume,for an exaustive discussion 

on this concept and of its properties). 

According to Yu•s definition, a decision x0 £ X is said to be 

nondominated with respect to a given domination cone D if no x' £ X 

exists such that f(x 1 ) 1 f(x0 ), and f(x')- f(A0 ) £-D. 

We first consider the case in which D :::~ N • { y , y £ Rm, y ~ 0 } , 

D ~ N. Such a condition means that a Pareto optimal decision x0 is 

no longer satisfactory if there exists another one x 1 allowing some 

marginal gains for some agent at the expenses of other agent's mar­

ginal losses, the ratios between such gains end losses being such 

that f(x')- f(x0 ) £-D. From a practical point of view, the Pareto 

optimal points are now divided into two subsets A and B such that it 

is worth while to suffer a (minor) marginal loss with respect to some 

component of the objective function in trading a point in A with some 

point in B in order to get a(greater) marginal gain with respect to 

some other component. 

Some earlier ideas about cone domination may be found in a pa­

per byZ.adeh (Zadeh 1963). It is interesting to mention them here 

because, even concerning a quite restricted problem, they do not in­

volve any critera intercomparison. Moreover, they point out an useful 

relation between Pareto optimality and decisions domination When all 

objective functions are linear. In fact, the problem of finding the 

Pareto optimal decisions of a given feasible set X with respect to a 
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given finite set of noncomparable linear homogegeous objective func­

tions f.(x) • c. , x , i • l ••• m may be handled and solved in the 
1 1 

decision space as the problem of finding the points x0 of X such that 

no x' 1 x0 in X exists such that x' t x0 - D where -D is the poly­

hedral convex cone generated by the vectors c .• In this case, the do-
1 

mination cone D lies in Rn and fully replaces the role of the objec-

tive function, thereby making it superfluous to take into considera­

tion the objective space f(X). (The above sketched approach may be 

obviously generalized to the case of infinitely many objective func­

tions, resulting in a nonpolyhedral domination cone). 

As it has been said, intercomparison is heavily introduced in 

the concept of nondominated solutions with respect to domination co­

nes containing I, since some trade-off is admitted between marginal 

losses and gains. Moreover, it is clear that the ggneralization that 

nondomination introduces on Pareto optimality follows the same line 

as properness did, since infinite and infinitesimal orders of margin­

al gain and losses were compared there, whereas their finite values 

are considered here. Nevertheless, it is surprising to see that in 

general the set of all proper Pareto optimal points cannot be obtain­

ed as the set of nondominated points with respect to any domination 

cone. A formal proof of such a property is not trivial, and is omit~ 

ted here for the sake of brevity. The logical independence between 

the concepts of domination and properness then suggests to distinguish 

between properly and nonproperly nondominated decisions. 

Some special situations, depending on the properties of the 

domination cone, deserve now some attention: consider first the case 

of D containing a full-dimension halfspace, but no proper subspacesa 

that is, consisting of the union of the origin and of on open half­

space whose boundary is a full dimension subspace. Then we have full 
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objectives intercomparability: there exists a well defined trade-off 

ratio between any two components of the objective function, which 

allows us to express all such components in. a single unity (for exam­

ple, money}, thereby reducing the problem to the search for decisions 

maximizing their sum, weighed with the components of any(outwaxd} DO!, 

mal to such domination cone. 

From this point of view, the general case in which the dominat­

ion cone does not contain any affine set, but contains P, may be con­

sidered as resulting from a situation of 11 imperfect", or" partial", 

intercomparability, in which some trade-offs between the criteria are 

admitted, but their ratios are not fixed: they are only bounded to 

lie within some interval. (See also Yu 1967, example 1.3 and remark 

1.4 ). Therefore, in the other extreme case, that is in Pareto 

optimality, trade-of•between criteria are inconsistent, since their 

ratios are not bounded in any way. Consider now the case of a domina! 

ion cone containing some nontrivial subspace: this implies that it 

contains two 11 domination directions" that are opposite, and it is 

easy to see that the strange situation may then be produced in which 

two decisions dominate each other, possibly preventing each other, in 

this way, from being optimal. As a consequence, the set of the " o~ 

timal objectives" (that is, the poin1By0 • f(x0 ), where x0 is a non­

dominated decision) either is empty or consists of a singleton. Indeed, 

since two optimal objectives, say y' and y", cannot dominate each 

other, neither of the vectors y' - y 11 and y" - y' may lie in the 

domination cone, which is impossible. 

This argument suggests that if the domination cone contains 

some proper subspace, two kinds of dominated decisions must be disti~ 

guished: the ones dominating all decisions by which they are dominat­

ed, and the ones for which there is at least a decision dominating 
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them, but that they do not dominate. Roughly speaking, the dominated 

decisions of the first kind above might be expected to be somehow 

" less dominated" than the other ones. (Remark that such a ranking 

of dominated decisions does not 1nvolve any cr~ter.ia intercompawis~n 

at all). 

Further insight about the above situation may be gained by a­

dopting the concepts and terminology of the binary preference relat­

ions, as we did for Pareto optimality. According to the definition of 

Yu, define the binary domination preference-or-indifference relation 

R on the cartesian product f(X) x f{X) as follows: 

1 2 2 1 
{y , y ) £ R ~ y £ y + D. 1.3,(1) 

Remarke that R is :reflexive for D closed, and it is antisymmetrio (1hat is, 
12 21 12 12 

(y , y ) £ R and {y , y ) £ R imply y c y for all y , y ) if 

D contains no nontrivial subspace. In such a situation, the nondomi­

nated decisions exactly coincide again with the ones mapped by f 

into the maximal set of R. In fact, the binary "domination preferen­

ce" relation P, which is again defined by 

(yl, /) £ P ~ (l, y2) £ R, (y2 , l) /.R 

1 2 
coincides with R whenever y 1 y • However, if D contains a nontriv-

ial subspace, the above coincidence does not longer hold in ~neral. 

For including in the definition of nondominated decisions the 

case of domination cones containing a nontrivial subspace it is then 

possible to adopt a more ~neral definition of nondominancy (see Mar­

zollo, Ukovich 1975), which formally agrees with the formulation of 

Pareto optimality we expressed using the binary relation Ra a deoisicn 

x0 £ X is nondominated with respect to a given cone D if it is map­

ped by f into the maximal set of R, as defined in 1,3,(1). 
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We conclude this paragraph with considerations on the case in 

which the domination cone is properly contained in N. Suppose for 

example that D • int N (see for example Aubin 1971); then for a de­

cision to be dominated it is required that another one exists giving 

some (positive) marginal gain with respect to each component of f. 

Such a condition may be seen as requiring a more strict cooperation 

among all agents than in the case of the Pareto optimalitys they mo-

di~ their decision only if each one is motivated to do so. In 

this way some kind of " :inertia 11 is added to the agents • behaviour, 

since not only a marginal loss for some of them, but also indifference 

may prevent marginal gains Of tbe other ones. 

In the next sections, we shall call all the nondominated points 

with respect to int N 11 weakly Pareto optimal". 

Similar inertial effects are always present whenever the domi­

nation cone is properly contained inN. In fact, the corresponding 

set of the nondominated decisions contains the Pareto optimal set, 

and this means that there are some decisions which the players think 

it is not worth while to change, even if some marginal gain could be 

realized without suffering any marginal loss. Such 11 worth while 11 

considerations seem to be peculiar for this class of problems, in the 

same way as criteria intercomparison is for domination with respect 

to cones properly containing N. 



PART II 

As mentioned in the Introduction, whereas Part I has been only 

a critical review of some basic concepts, Part II contains the re­

sults of the present contribution. Namely, in Paragraph II,3 some 

theorems will be proven which guarantee the equivalence between the 

different kinds of 11 local'' and "differential'' optimality (or non­

dominacy) which are defined in Paragraph II,lJ and in Paragraph II,4 

some broad and different sufficient conditions will be given which 

guarantee differentially optimal decisions to be also locally opti­

mal. As it will be further remarked in the conclusions, these condi­

tions have a special importance, since both they and differential 

o~timalities have a practical test tor being checked. 

II.l.- DEFINITIONS AND REMARKS 

We devote the first paragraph of this part to the definition 

of the nine kinds of optimality we shall refer to, and to some inter­

esting comments and remarks. 

We consider again the set X of feasible decisions given by 

X = { x, I g{x) :i!: 0 } 
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where g maps Rn into Rk, and the objective function f = f 1 , f 2 •••• 

f , with m > 1, is defined on some open set containing X. 
m 

We consider three kinds of orderings relative to a given closed 
m and convex cone OcR. They are obtained from the binary relation R, 

defined on f(X) x f(X) by 
1 2 1 2 

(y , y ) t a ~ y E y + V II,1(1) 

when we take the set Va 

i) equal to c , or 

ii) equal to c• .. cjo , or 

iii) equal to int C {which we always suppose non empty}. 

In correspondence, such relations will be denoted by R;;. , a> , 

For the 
1 1 2 

y ... y 
1 1 2 

y >> y 

sake of simplicity, we 
1 2 

for (y , y ) & a 

for (71 , y2) £a 

shall often use the notation 
1 I 2 ( 1 2) y > y for y , y £ a 

• 

R:>l> • 

We thus obtain three kinds of global optimality by substituting 

the relation R"" , a> or R>> to R in the following defini tiona 

x0 & X is {globally) optimal if no x1 I x0 exists in X suoh that 

(f(x1), f(x0 )) E R. 
> a>> . 1 J o Remark that, when considering a and , the cond~tion x r x 

may be dropped. For the sake of clarity we explicitely state the def­

initions• 

Definition II,l,l 
0 

x £ X is a "globally strictly optimal'' (a.s.o.) decision if no 
1 j 0 x r x exists in X such that 

f(x1) - f{x0 ) E c, 
that is f(x1 ) 0!: 1 f(x0 )J 

Definition II,1,2 

x0 £ X is a "globally ordinarily optimal'' (G.o.o.) decision if no 
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x1 exists in X such that 

f(x1) 

that is, f(x1 ) > 1 f(x0 ) 1 

Definition II,l,3 
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x0 £ X is a 11 ordinarily weakly optimal'' (o.w.o.) decision if no x1 

exists in X such that 

f(x1) - f(x0 ) t int c, 
that is, f(x1 ) » 1 f(x0 ). 

The terminology we use is justified by the above definitions. 

In fact, strict optimality implies the ordinary one, which in turn 

implies weak optimality. 

Some remarks concerning the above concepts are appropriates 

i) The relations R'"' and R» appearing in definitions n,2 and 

II,3, are not reflexive, since 0 I c1 and 0 I int c, whereas R;;. is. 

That is why we did not use in our definitions the concept of 1'maxi­

mality11, which is based on the binary relation P 
1 2 1 2 2 1 

(y , y ) £ p ~ (y ' y ) t R, (y ' y ) I R, 

and therefore the maximal sets of R;a. and R > cobcide, as it may be 

easily checked, a circumstance which does not occur following our 

definitions. 

ii) These defini tiona af' optimality are actually a specification 

of the definition of "non dominacy'' given by Yu (see for example Yu, 

this volume), in the sense that a clear distinction is made a priori 

between the case V • C (which cotacides with Yu's non-domination 
1 

with respect to the domination coneD •- C), V • C • C/O, V • int C. 
+ iii) In the particular case of C • N , the non-negative orthant of 

I+ • { 71 y t Rm, y llr 0 } 

global ordinary optimality according to definition II,l,2 reduces to 
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the standard Pareto-optimalit7, whereas strict optimality of defini­

tion II,l,l is sometimes mentioned in the literature in its loc~l 

version {see further in this paper) as "strict Pareto optimality" 

(see Smale 1973,1974, Wan 1975), and weak optimality of definition 

II,3 also becomes a kind of Pareto-optimality, which we could call 

"weak Pareto optimality", whose meaning was discussed at the end of 

paragraph I,3. 

Remembering the consideration• about ''equality" of (ordinary) 

Pareto optimality we exposed in paragraph I.l, we give similar inter­

pretations of the two other kinds of optimality. For weak Pareto op­

timality, each agent indicates the set Bi of the feasible decisions 

which are (strongly) better than x0 with respect to his personal. cri­

teriont then x0 is weakly Pareto optimal if, and only if, the inte.­

section of all such Bi's is empty. For strict Pareto optimality, 

each agent indicates the set c1 of feasible decisions which are "bet­

ter- or- equal" for him than x0 t it is strictly optimal if, and 

only if, the intersection of all such c1 •s contains only x0 • Then the 

conclusion ma7 be drawn that Pareto optimality, of ant kind, always 

satisfies the "equality principle" quoted above. 

iv) Remember also that, as it is well known, if Q. is a polyhe­

drical closed cone, the ordinary optimality of definition II,2 coin­

cides with ordinary Pareto optimality with respect to the new objeo­

tive fUnction Hf, where the rows of the matrix Hare the generators 

) o o m 
of the (polyedrical closed cone - C , where C £ R is the "dual'' 

to Ct 

c0 • { z I z, 0 Eo, 0 t c } 
v) Strict optimality is equivalent to ordinary optimality, if f is 

injective. 

The three kinds of optimality, as defined above, are seldom 
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easy to characterise, unless some special conditions (e.g. convexity 

of f(X)) are verified: we therefore consider their 11 local" version, 

instead of the 11 global" one we formulated, by limiting the search 

for x1 to some neighbourhood of x0 • We thus obtain the following def-

initions: 

Definition II,l,l',2',3' 

x0 £ X is a ''locally (strictly, L.s.o.) (ordinarily, 1.0.0.) {weak­

ly, L.~.o.) decision iff a neighbourhood I of x0 exists such that for 
1 

no x £ I n X 

that is 

We shall often use an alternative formulation of the previous defini-

tiona of local optimality, which is clearly equivalent, as it may 

easily be checked: 

x0 £ X is locally (strictly) (ordinarily} (weakly} optimal if no 

infinite sequence { xk} exists such that xk f. o, xk -o, and, for all 

k, f(x0 + xk) - f(x0 ) e (C) (c1) (int C). 

Global optimality of x0 obviously implies local optimality of the 

same kind. 

Under some concavity-type hypotheses, which it is trivial to de­

termine, the viceversa is also true. For example, taking for simplic-

+ ity C • N , and referring to Mangasarian 1969, ch. 9 for terminology, 

it is easy to see that if X is convex (and this is true if the compo­

nents 

i) 

of 
0 

X 

ii) 

mality 

gi' i 

local 

if the 

local 

of x 
0 

= 1 ••• k, of g are quasi-concave), 

strict optimality of x0 implies global strict optimality 
0 

components f 1 , i • 1 ••• m, off are quasi-concave in x • 

ordinary optimality of x0 implies global ordinary opti­

if f(x) ~ f(x0 ) 1 implies 
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f[(l- X)x + Xx0 ] i!= f(x0 ), V x e: X, O<X<l, 

The condition is an obvious extension to vectors of quasi-concavity 

of scalar functions, 

iii) local weak optimality of x0 implies global weak optimality 

of x0 if the fi 1 s are strictly quasi-concave. 

Much more interesting will be to find conditions which permit 

to characterize the local optimalities we defined, This will be done 

in paragraphes II,3 and II,4, where we shall use the definitions we 

now give for the ''differentai1' 1 version of the three kinds of 

optimality, and the definitions of generalized forms of convexity and 

concavity which we shall give in paragraph rr,2. 
The following definitions of 11 differential" optimalities are 

obtained by substituting to the functions f and g their linear approx­

imations at x0 (remember we supposed both f and g to be continously 

differentiable) a 

Definition II,l,l 11 ,2 1',3 1 ' 

x0 e: X is differentially (s~rictly, D.s.o.) (ordinarily, D.O,O,) 

(weakly, D,W,O.) optimal if no i 1 0 exists such that 

i) Vf(x0 ) i e: (c) (c1 ) (int C) 

ii) V g1 (x0 ) i i!= 0 

where Vf(x0 ) is the matrix whose rows are the gradients of the com­

ponents of f, and gi is the vector-valued function whose components 

are such that g.(x0 ) c 0 (the so-called "active" constraints). We 
1 

shall refer to condition i) by saying that x0 + i is 11 differentially 

better than x011 and to condition ii) by saying that it is 11 differen-
+ tially feasible'~ Notice that if C • N , remembering the definitions 

of paragraph I,2, the "properly optimal" decisions in the sense of 

Kuhn and Tucker are the ones which are both L.o.o. al:ld D.o.o. in the 

above definitions. 
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Table I surr®arizes all above defintions of opti~ality. 

GLOBAL 

LOOAL 

TIIFFERENTIAL 

vVEAK 

1 . no x ex1.sts 
such that 

f(x1) >~ f(x0 ) 

1 g(x ) ~ 0 

there is a 
neic;hbourhood 
I of x0 such 
t~at for no 
x t: In X 

f(x1 ) >::! f(x0 ) 

g(x1 ) il= 0 

bold 

no x exists 
such that 

Vf(x0 ) i >::! 0 

( 0) -gix x;;~~O 

TABLE I 

QRJ)INARY 

1 . t no x ex1.s s 
such that 

f(x1 ) >1 f(x0 ) 

1 g(x ) il= 0 

there is a 
neighbourhood 
I of x0 such 
that for no 
xlt:InX 

f(x1) ~ f(x0 ) 

g(x1 ) ;;~~ 0 

bold 

no x exists 
such that 

Vf(x0 ) i ~ 0 

gi(x0 ) i il= 0 

STRICT 

1_1 0 . t no x ,.x ex1.s s 
such that 

f(x1 ) >>1 f(x0 ) 

1 g(x ) ;;. 0 

there is a 
neighbourhood 
I of x0 such 
that for no 
xl E I n x, 
xl I xo 

f(:xh >~ f(x0 ) 

1 g(x ) il= 0 

bold 

no x exists 
such that 

( 0) - I Vfx x>>O 

0) -g1 (x x ;;. 0 

II.2.- SO:ME GE'NER.ALIZ:&.'Il TIEFINITIONS OF CONV2nfi ANI> CONCAVITY 

The following Tiefinitions may be considered as extensions to 

vector functions f, when their range is ordered by the cone v, of the 
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definitions of pseudo-convexity, QUasi-convexity, etc ••• as defined 

for scalar functions in Mangasarian 1969, ch. 9, to which we constan-

tly refer for terminology. 

Although all definitions we shall give are meant to have only 

local validity, in a neighbourhood of x0 , we shall always understand 

the term 11 local 11 in the de nomina tiona we shall use. 

Definition II,2,1 

The continuously differentiable function h from Rn to Rp is 
0 I I p 

''convex atx with respect to a given cone V of R (or, simply, "V-

convex at x0 " ) iff a A > 0 exists such that h(x0 ) x E V in:plies 

h(x0 + x ) - h(x0 ) E V, for all x E A B, _where B is the unit ball of 

Rn. 

Definition. II,2,2 

The continuously differentiable function h from Rn to RP is 

11 concave at x 0 with respect to a given cone V'' 
o" 

11 V-concave at x ), iff a A> 0 exists such that 

plies h(x0 + x) - h(x0 ) i V, for all x E A B. 

of Rp (or, simply, 

V h(x0 ) x /. V im-

The following obvious properties of the two above definitions 

will be often useful in proving some interesting resultst a neces­

sary and sufficient condition for h to be V-convex at x0 is that a 

A > 0 exists such that h(x0 + x) - h(x0 ) i V implies Vh(:x0 ) xi V 

0 ( 0 ) ( 0) for all x E A B, whereas for V-concavity at x, h x + x - h x E V 

implies V h(x0 ) x E V for the some x' s. 

In the sequel we shall often ordt the specification" at x0 ••, 

which will be clear from the contest. 

In the next sections we shall deal with convexity and concavity 

of the objective function f with respect to the closed and convex 

cone c, to C' and to int C. For easy reference we summarize in Table2 

the relations which define the corresponding generalized convexities 



308 A. Marzollo, W. Ukovich 

and concavh;ies if valid for all x lyine; in a proper neighbourhood 

of :::0 • 

TABLE II 

CONV~~XITY CONCAVITY 
\.ith 

respect 
to: 

V f(x 0 )xcC ~ f(x0 +x)-f(x0 )tC V f(x 0 )xf.C ~ f(x 0 +x)-f(x 0 ) f.C 

c or or 

f(x0+x)-f(x0 )f.c~ 'llf(x0 )xf,C 0 ) 0) 0 f(x +x -f(x tC~ Vf(x )xtC 

v f(x0 )xt 01 ~ f(x0 +X)-f(x0 )tc• V f(x0 )xf.C '~f(x0 +x)-f(x0 )f.C 1 

c• or or 

f(x0 +x)-f(x 0 )/C'~ Vf(x0 )xf.C 1 f(x0+x)-f(x0 )tC•~Vf(x0 )xtC 1 

Vf~0)xt :lntC ~f(~+x)-f(i>)t:intC Vf(i')xf,intC~ f(i>+x)-f(x<)f,:lntC 

int C or or 

f(.£ +x)-f(i'),'intC ~ Vf(x~x;':intC f(x0 +x)-r(i'} t:lnt C ==:> Vr(i>)xt :int C 

No atterept is made here to build up a general theory of the 

functions enjoying these properties. We expose now only some rela-

tions with usual concepts of convexity and concavity. 

If C = N+ then C-convexity reduces to (local) componentwise 

pseudoconvexity, int C-convexity to (local) componentwise quasicon­

vexity, whereas C-concavity reduces to (local) componentwise quasi­

concavity and int C-concavitT reduces to (local) componentwise pseud~ 
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concavity (see for example 1fungasarian 1969, ch. 9). Obviously, if 

C • N • -N+,the same reductions as above are produced, in which pseudo­

and quasi-convexity are replaced by pseudo- and quasi-concavity, re­

spectively, and viceversa. 

II.3.- THE MAIN RESULTS 1iJI'l'HOUT SCALARIZA'l'ION 

In order to state our sufficient conditions on the functions f 

and g, which guarantee the equivalence of different kinds of local 

and differential optimality we shall use the two following Le~masa 

Lemma II,3,1 

If there is no x ~ 0 such that Vh{x0 )xt:V, where h is a contin­

uosly differentiable function from Rn to Rp and V is a closed and con­

vex cone of RP, then there cannot exist an infinite sequence {xj}such 

that xj- 0 and vj .. h(x0 +xj)-h(x0 )£V for all j. 

Proof {by contradiction). 

Sup:pose that the infinite sequence {xj} is such that, xj- o, 

and vj t: V for all j. By the Bolzano-Weierstrass theorem there exists 

an infinite subsequence { xk} such that xk- 0, II~ II - i, vk £ V 

for all k. Consider now the sequence { II ~II } 1 by the continuous k 

differentiability of h, we may express it as { Vh(x0 ) II :$ 11 +0 (11 xk II >}, 
with the second term tending k to zero as x tends to zero. We there-

vk 
fore get II Xkn ( o)---Vh x x, thus contradicting the hypothesis, since 

~ 0 
from the fact that II Xkll £ V for all k we conclude that Vh(x )i £ V. 

Lemma II,3,2 

If there does not exist any infinite sequence { xj} such that 

xj-o and vj • h(x0+xj)-h(x0 )cV for all j, then no x f 0 exists 

such that Vh(x0 )xt:V, where h is a continuously differentiable and 

V-convex function at x0 from Rn to RP, and Vis a closed and convex 
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cone of a!>. 
Proof (by contradiction). 

It suffices to choose 

Then V-convexity implies vj 

tion. 

A. Marzollo, W. Ukovich 

. 1 
xJ.,- x, with x such that Vh(x0 )x£V. 

j 
£ V for all j large enough, a contradic-

As a conser!uence of the above lemmas, we have the following 

theorems: 

Theorem II1 3,1 (D.s.o. ~ L.s.o.) 

Differential strict optimality implies local optimality, of 

any kind. 

Proof. 

It suffices to show that strict local optimality is implied, 

and this may be done by using Lemma 111311 with p • m + k, h ·[f] and 
k k _k k g 

v ={v = (y,z) I y£0 c Rm, zt:P c R }, with r-{:z.lzt:R' z .. o}. 

Theorem II,3,2 {L.s.o. ~ n.s.o.) 
Strict looal optimality at x0 implies differential optimality 

at x0 , of any kind, provided that fisC-convex at x0 and g is pseu­

do-convex at x0 • 

Proof. 

The proof is immediate, by using Lemma III,3,2 with the same 

techniques of the proof of Theorem II,),l. 

Now we consider the case of weak optimality. We state the two 

following theorems: 

Theorem II 1313 {D. W.O. ~L. W.O.) 

If x0 is a differentially weakly optimal decision, f is int C-
o 0 0 

concave at x and g is quasi concave at x , then x is also a loc~ 

weakly optimal decision. 

Proof. 

The last par·~ of the theorem follows by adapting Theorem II ,3,1. 
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to g. The rest od the proof may be carried out by contradiction, 

by recalline that f(x 0 +x)-f(x0 ) E int C implies Vf(x0 ) x E int c, 
since f is int C-concave. 

Theorc:n II ,3,4 (L.w.o.~ D.w.o.) 
0 If x is a locally weakly opti~al decision, and g is pseudo-

311 

convex at x0 , then x0 is also a differentially weakly o:ptimal deci-

sion. 

Proof. 

The condition on g follows fror:1 Lemma III,3,2. That no condi-

tion is required on f may be proven by 

sequence { xk} converging to zero with 

contradiction: choose any 
:x:k - -

llxkll - x, where x is such 
11 vk f(xO+xk~-f(x0 ) 

sequence ~ = x k 

V f(x 0 )x E int C, thus contradicting the fact that II ;k II , 

that Vf(x0 )x E int C. Then the 

tends to 

and therefore its linli t, cannot lie in int C for all k. 

For the case of ordinary optimality we use similar arguments 

to obtain the following theorems: 

Theorem II ,3 1 5 (D.o.o.~ L.o.o.) 
0 

If x is a differentially ordinarily optimal decision, f is 

C1-concave at x0 , e.nd g is quasi-concave at x0 , then x0 is also a 

locally ordinarily optimal decision. 

Proof. 

As in Theorem II,3,3 the last part of the statement follows 

from Theorem II,3,1, and the rest of the proof follows by contra­

diction, since f(x 0 +x)-f(x0 ) E C1 implies 'iJ f(x0 )x E: C'' by the c•-
concavity of f at 

Theorem II,3,6 

0 
X • 

(L.o.o.~ D.o.o.) 
If x 0 is a locally ordinarily optimal decision, f is C1-convex 

at x0 , and g is pseudo-convex at x0 , then x0 is also a differentially 

ordinar,y optimal decision. 
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Proof. 

As in Theorems III,3,2 and III,3,4, the condition on g follows 

fro::c Lemma III,3,2. The condition on f is :proven by contradictions 

{ k} k 1 - - c)-choose the sequence x with x = k x, where x is such that Vf(x x 

t 0 1 • Then f(x0 +xk)-f(x0 ) tOt for all k, by the D•-convexity of f 

at x0 , thus contradicting the ordinary local optimality of x0 • 

Notice that pseudo-convexity at x0 is the only 11 constraint 

qualification'' required by the 11 even-numbered" theorems (that is, 

the theorems stating implications from local to differential opti­

mality). Such a general property trivially follows from Lemma III,3,~ 

as it has been observed. Furthermore, no condition on constraints is 

required by the 11 odd-numbered" theorems (that is, the ones stating 

implications from differential to local optimality). This fact is 

one of the most relevant consequences of Lew~a III,3,1. 

II.4.- APPROPRIATE SCALARIZATICN, AND SUFFICIENT CONDITIONS FOR 
DIFFERENTIALLY OPTIMAL DECISIONS ro·m: ALSO LOCALLY OPTH!AL 

As it is well known, if f(X), or f(X) + D, see Yu 1972, and 

Yu this volume, is strictly convex, the decisions x4 which are 

non-dominated with respect to the cone D are characterized by the 

fact that the scalar form ~ ai f 1 (x) assumes there its global 

(local) maximum, when a £ D0 , D0 the dual of D. See also Marzollo, 

Ukovich 1974 and 1975 for the case f(x) + D only convex. 

The reason wh7 the above procedure fails to give all globally 

(locally) non dominated decision without the above mentioned convex­

ity assumptions may be seen as a consequence of the fact that throu81 

the scalarization a complete quasi-ordering {+) is introduced on all 

(+) We follow here the terminology of Sen, 1970. 
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x £X (or a neighbourhood of x) so that, for each a £ D0 , x' is 
a 

313 

11 better or equal" x 11 iff r.m a t (x') >- I.m a t (x 11 ) • Therefore 1i i i .... 1i i i 

comparisons are introduced among decisions which ~ be not compara-

ble in the original problem, for example between two decisions which 

are both Pareto-optimal, in the case D • N. 

Dealing with local Pareto-optimality and referring to the case 

of non convex f {X) + N, W&n (see Theorem 2, Lemma 1 and Theorem 3 

in Wan 1975) recently extended some previous results of Smale (see 

Smale 1973 and 1974) bJ giving a second order condition (see Wan 

1975, Theorem 2, Lemma 1 and Theorem 3) which we restate here, using 

our terminology: a differentially weakly Pareto-optimal decision x0 

is also locally strictly Pareto-optimal if, tor all xI 0 such that 
0) 2 - ( 0) V t(x x > o, the quadratic form x, V y f x x is negative, 
- 0) 2 -where y > 0 is such that y V t(x • 0 and V y t is the hessian ma-

o trix of the scalar function y f at x • 

Using a different approach from Smale and Wan, we shall here 

generalize the previous sufficient conditions for local optimaly in 

two relevant directions, since we shall deal with non-dominacy with 

respect to a broad classes of (possibly non-polyhedrical) cones in­

stead of the only Pareto-optimality, and since the condition we shall 

put on the scalarized function is implied by the previous second or­

der condition. 

As in Wan 1975, we shall deal here only with the unconstrained 

case X • Rn, but the extension to the constrained case X • { x J g(x) ~ 0} 

is easy and follows the same pattern as in Marzollo, Serafini, Uko­

vich 1976, where Pareto-optimality was treated. 

In the following theorems, which will relate differential to 

local optimalities, we shall need appropriate versions of some so 

called'' separation'' or ''alternative" theorems, which we state in 
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the form of Lemma 11,4,1 and Lemma II,4,2 • (For an exhaustive re­

view of the "theorems of the altern~tive 11 dealing with mutual in­

compatibility of the feasibility of two systems of linear inequali­

ties, see for example Gale 1960 and Mangasarian 1969. For more sophis­

ticated versions, see Berge and Gouila Houri 1968, Rockafellar 1970, 

Hoang 1974, Hurwicz 1958). 

Lemma II ,4 , 1 

If the range of a given (m x n) matrix A does not meet the in­

terior of a given (full-dimensional) convex aone C of Rm, then there 

exists a non zero vector y in C00={y I y £ Rm, y y 1 ~ 0 for all y' £ c} 
the polar cone of C, such that y A • 0. 

Proof. 

The conditions of Theorem 11.2 of Rockafellar 1970 are met, 

hence a hyperplane containing the range of A exists, which does not 

meet int C. Then y is any normal to such a hyperplane pointing toward 

the halfspace containing int C, as it may be easily checked. 

Lenr.::.. II,!~, 2 

If the inter~ection of the ranee of a given (m x n) matrix A 

with a given (full-din,ensional) convex cone C of Rm contains the only 

origin, then there exists a vector yin int C00 .. {yjy £ Rm, y y' > o, 

fer all y' £ C } such that y A • 0. 

Proof. 

By the ''main separation theorem" (Theorer.; 11.3 of Rocko.fellar 

1970) there exists a hyperplane properly separating C from the range 

of A. Then again y is any normal to such a hyperplan~ pointing to­

ward the (closed) halfspace containing C. 

We state now the main results of this paragraphs 

Theorem II,4,1 (D.W.O.==> L.s.o.) 
If x0 is a differentially weakly optimal decision, a nonzero 
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- 00 - 0) vector y exists in C such that y Vf(x = 0. If there exists an 
n 

open cone B2 in R and a neighbourhood I of the origin such that 

B' c B' c B' 
l 2 3' 

II,4(1) 

where, 

BJ. • In B1 J B1·{ xI xI o, Vf(x0 ) x t C}, B2 .. InB2 , 

B3 •lnB3; B3 •{ xI y (f(x0 + x)- f(x0 )) < o }, 
then x 0 is also a locally strictly optimal decision (hence also lo­

cally ordinarily and weakly optimal). 

Proof. 

The first part of the statement simply follows fror.J Lemma II,4 11 

by taking Vf(x0 ) • A, since by weak differential optimality Vf(x0 )x 

I int c, for all x. 

The second part is proven by contradiction: suppose that x0 is 

not a locally strictly optimal decision; then there exists a nonzero 

infinite sequence { xj} tending to zero such that, for all j, 

f (x0 + xj) - f(x0 ) t c. 
By the Bolzano-Weierstrass theorem, there exists an infinite 

{ k} ~ -subsequence x such that II Xkll --+ x • 

Clearly, xk I B3 for all k, by definition of B3 and since yt ~ 
f(x0 + xk) - f(x0 ) t c. Hence xk I B~ for sufficiently large k, and 

xk " therefore 11 II I B2 , for sufficiently large k. But i £ B1 , since 
f x0+xk -f xo 

II II is in the closed cone C for all k, and it tends to 

f(x0 ) i. We thus have a contradiction, since our hypothesis implies 

B1 c B2• 

It may be noticed that condition II.4(1) in the above theorem 

represents a very weak kind of. concavity at x0 of the function y f 1 

since it is required only for some special directions. If one recalls 

the fo~lowing definition (see Ponstein 1967)t a real valued function 



316 A. Marzollo, W. Ukovich 

h is strictly pseudoconcave at x0 iff h(x0+x)-h(:x:~;;.O impliesVh(x0 ):x: > 0 

(or, equivalently, Vh(x0 )x ~ 0 implies h(x0 +x)-h(x0 )< 0), the above 

condition may be seen as ''local strict C-pseudoconcavity" required 

only in the directions x such that V f(x0 ) x £ boundary of C (by dif­

feren~ially weak optimality there is no x such that Vf(x0 ) x £ int C). 

Re~ark also that the esistance of the open cone B2 is essential for 

the validity of Theorem II,4,1; take for example 

n= 2, m • 3 

(x) 
2 

fl .. xt -

f2 (x) = x2 -

f3 (x) 2 . ~-

V f (x0 ) 

c .. N+ 

x2 

2 
xl 

4 
:x:1 

0 

a 0 

0 

-1 

0 
X • 

0 
0 

1 , so we may choosey • (1, 1, 1), hence 

0 

B1 .. { (x1 , 0) I x1 £ R1 } is contained in 

x1 £ ~} , but no B2 may be found, and 

actually the oriein is not a locally Pareto-optin:al decision. 

From the corr.putational point of view, the following Corollary 

is usefu1r 

Corollary II,4,1 

If x0 is a differentially weakly optir.;a] decision, and x E B1 
z - 0) _l 2 - 0) 

implies x ,V y f(x x < 0, x ,. 0, where V y f(x is the hessian 

rr.atri:x of y f at x 0 , with y E C00 such that y V f(x0 ) "' 0, then x0 

is C:'.h1o a locally strictly optimal decision. 

Proof. 

Sirr,ply let B2 be { x I x V 2 y f(x 0 ) x < 0} , and the condi tiona 

of Theorem II,4,1 are met. 

Notice that Corollary II,4,l extends Theorem 3 in Wan, 1975• 
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With the same arguments as in 'rheorem II,4,1 and using Lemma 

II,4,2 instead of Lemma II,4,1, it is also possible to give sufficiem 

conditions ·for differentially ordinarily weakly optimal decisions to 

be also locally ordinarily (weakly) optimal. We state these condi-

tions in the following theorems. 

Theorem II,4,2 

If x0 is a differentially ordinarily optimal decision, a non­

zero vector y exists in int C00 such that y, Vf(x0 ) • 0. Repeating 

the same hypotheses an in Theorem II,4,1 with the only modification 

of B3 sostituted with {xI y,[r(x0 + x)- f(x0 )]""' 0} , x0 is a also 

locally ordinarily optimal decisicn. 

Theorem II,4,3 

Theorem II,4,2 holds if we substitute the word "ordinary'' with 

the word 'weakly". Notice that the "local strict C pseudoconoavity" 

required in Theorem II,4,1 is relaxed in the last theorems, since on­

ly 11 local C concavity'' is now required. 

11.5.- CONCLUSIONS 

In Part II,l, nine kinds of optimalities were defined with re­

spect to a cone c. These optimalities r2duce to what we called weak, 

ordinary or strict Pareto optimality when the cone Cis int N+, N+/0, 

N+ respectively. With the definition in II,2 of appropriate types of 

convexity with respect to a cone, a complete set of sufficient con­

ditions was given on the behaviour of the objective function f and 

the constraint function g under which each one of the defined opti­

malities implies each other one. For the particular case C • N+/o, 

(and for polyedrical cones, a situation which may easily be reduced 

to the Pareto case) some of these conditions were already available 
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in the literature, some are new; in general an effort was made to 

weaken as much as possible the hypotheses on f and g, dealing in a 

unitary way with polyedrical or non-polyedrical cones. 

Referring to polyedrical cones, bene '·o Pareto optimali ties, 

in Theorem II,4,1 we required only strict ~deudoconcavity of the lin­

ear cor::bination y ,f of the oorr.ponents f. (which is obviously less 
l. 

stringent than pseudoconcavity of each fi), limited to some special 

directions, in o1·der to infer locally strict from differentially weak 

ortintality, and strict pseudoconcavity was relaxed into concavity of 

y,f in order to infer local ordinar.r {weak) optimality from differen­

ti~l ordinary (weak) o~timality. 

The results of II,4 are important also from a practical point 

of view, since the very definition of differential optimalities al­

lows an easy way of checking them, and the conditions for passing 

from differential to local optimalities suggest an obvious way of 

testing them. 

The check for differential optimalities actually consists in 

verifying the unfeasibility of the following linear systems of ine­

qualities (unconstrained case) 

Vf(:x0 ) x ~ 0 II,5(1) 

X ~ 0 

for differentially strict optim~lity; 

II,5(2) 

for differentially ordinary optimality; 

II,5(3) 

for differentially weak optimality. 

The above verification may efficiently be carried out by adapt­

ing the simplex method to the case of absence of an objective function 
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(see Marzollo, Serafini, Ukovich 1976). If II,5(1) is unfeasible, 
+ using Theorem II ,3 ,1 with, C• N , we may also eta te locally strict 

(hence also ordinary and weak) optimality of x0 • 

If II,5(1) is feasible but II,5(2) is not, we have to solve the 

linear system y, Vf(x0 ) • 0 obtaining an y » o, and then to verify 

whether the conditions of Theorem II,4,1 are satisfied, where E1 re­

duces to the kernel of Vf(:x0 ) a { x l Vf(x0 ) x • 0}. If they are, 

:x0 is locally strictly optimal. If they are not, but the condition of 

Theorem II,4,2 are satisfied {with E1 given again by the kernel of 

Vf(x0 )), x0 is locally ordinarily optimal. 

If II,5(1) and II,5(2) are feasible, but II,5(3) is not, the 

solution of the linear system y, V f(x0 ) .. 0 gives us an y > o. In 

correspondence to such y, if the conditions of Theorem II,4,1 are sat­

isfied (with E1 given by the cone { x j V f(x0 ) x 3:: 0} ), x0 is locally 

strictly optimal. If they are not, but those of Theorem II,4,3 are, 

x0 is locally weakly optimal. 

Needless to say, series expansions of y, f 0 around x are 

practical way of testing the above conditions, as it was done in 

Corollary II,4,1. 

a 

For the constrained case, the condition V g1{x0 ) x 3:: 0 is 

added to the systems II,5,(1)(2}(3), which may be verified again with 

the algorithm suggested in Marzollo, Serafini, Ukovich 1976; and also 

the verification of the conditions which result from the analogues of 

Theorems II,4,1,2,3 (with the scalar function y,t + z,g substituting 

y,f, etc.) follows the same patterns. 
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ESTIMATING THE COMMON COST OF A GOOD WHEN THE LOCAL 

COSTS ARE KNOWN IN TH! COUNTRIES OF A COMMUNITY 

1. INTRODUCTION. 

Mario Volpato 

Department of Mathematics 

University of Venice 

In an economic community among many countries, the estimate of the 

common cost of any good, when the local costs in the countries are 

known, is of substantial interest also for pure theory. In fact, the 

classical point of view of the compared costs solves the problem under 

the hypothesis that the local global cost.s. are linear, which involves 

that the local costs are independent of the quantity of the good. It is 

also limited (as far as we know) to the case of only two countries. 

In this paper we consider the problem with any number of partners 

and assuming that the local global costs are not necessarily linear. 
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2. A CRITERION FOR THE ESTIMATE OF THE COMMON GLOBAL COST. 

Starting from the classical theory of the compared costs, our cri­

terion to determine the common global cost of any amount Xh (of any good 

h) makes use of an estimate of the penalty induced by the production of 

Xh on the production of any other good k, to be assumed as standard. In 

other words, the global common cost of the amount Xh of h is given by 

the quantity Z (of the standard good k) that the community cannot pro-
k 

duce since Xh is produced. The criterion is not yet defined. Indeed, the 

a~ount Z which is not produced depends on the policy of the community, 
k 

dividing among the countries the production of the total amount Xh. The 

obvious partition is the one minimizing the common penalty Z • This is 
k 

achieved by a policy (to be called optimal, or community-optimal) assi-

gning to each country the production of a part of Xh (with the constraint 

of the total amount Xh) in such a way that the (possible) residual resour 

ces, if fully used for the production of the standard good k, give the 

maximum yield. The criterion for the estimate of the common global cost 

is now defined, it consists in solving the problem of optimizing the 

production. 

3. PRODUCTION ABILITY OF EACH COUNTRY. 

Let P , P , ... , P be the countries of the community and assume 
1 2 n 

that any country P. can direct to the production of the good h certain 
l 

resources that can produce at most the amount Rih of h. It follows that 

the maximum amount of h that the community could produce is given by the 

sum 
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(1) 

The community production Xh of h can then vary in the range 

( 2) 

We will better think of this range as the addition of the n adjacent 

subranges 

def 
s s+l 

I 
s+l,h [ Rih .:f. ~~ L Rih 

i=l i=l 
(3) 

0 
(s 1, n-1; L def 

O) 0, . . . ' Rih === . 
i=l 

Each one can again be split into three sets according to 

s 
def 

s s+l - def [ L <L I 
s+l,h 

(H Rih) + (H Rih < xh Rih) + s 
i=l 

s+l 
i=l i=l 

def 
s+l - z= + (H Rih) (4) s+l 
i=l 

Here H is the internal of I 1 H and H are degenerate sub-
s+l s+ ,h s s+l 

ranges (whence the bar), respectively the left and right extrema of 

I 
s+l,h 

The range of I (i.e. R ) is clearly the amount of h that the 
s+l,h s+l,h 

country P can produce. Using the known symbols, the equality holds 
s+l 

H 

n-1 

U { Is+l,h 
s=O 

H + H + H } s s+l s+l · 
(5) 

Assume then that the same resources which could be used in the various 
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countries to produce h can be converted to the production of another 

good k to be conventionally used as standard. More precisely, assume 

that in the country P., the total conversion of the resources useful 
~ 

to produce h gives a yield Rik of k. 

The maximum production of k in the community would then be 

n 

L Rik 
i=l 

def 

Then the community production Y of k can vary in the range 
k 

K 
def 

0 ~ Y ~ R 
k k 

(6) 

(7) 

Again, K is the union of n adjacent subranges whose amplitude is the 

maximum affordable production of k in each country. It will be useful, 

below, to write now in the first place the range whose amplitude gives 

the maximum production in the country P , in the second P and so on. 
n n-1 

In symbols 

K 

n-1 

u 
t=O 

{ J n-t ,k K +K +K } n-t+l n-t n-t ' 

where 

n n 
def L L -

J R ~ \ ~ Rik (K 
n-t ,k 

i=n-t+l 
ik 

i=n-t 

n n 

(K 
def L < y < L Rik) + Rik + 

n-t 
i=n-t+l 

k 
i=n-t 

(t O, 1, ... , n-1; t Rik 
i=n+l 

def 
0) . 

(8) 

def 
n 

L Rik) n-t+l 
i=n-t+l 

n 
(K 

def L Rik) === 
n-t 

i=n-t 

(9) 

+ 
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4. CONVERSION COSTS. 

We assumed in the previous section that in the country P. the 
1 

resources producing the amount Rib of h, if properly converted for the 

production of the standard good k, give a yield R, • Now, in the classi 
1k 

cal theory of compared costs, the ratio 

Rik def 

Rib qihk 
(10) 

is assumed as unit yield in the h + k conversion. In other words, the 

conversion h + k (i.e. from the good h to the good k) of the resources 

that in the country P. produce a unit amount of h, should yield q. k 
1 1h 

units of the standard good k. This way, in the country P., a unit of h 
1 

should cost as much as q. units of k. 
1hk 

As a consequence, q, is assumed as the price (in standard units) of 
1hk 

the good h, and the product 

(11) 

as the global cost, in P,, of the amount x. of h. The classical theory 
1 1h 

can conflict with real life. Indeed, it souds reasonable that the price 

of the conversion h + k can depend on the quantity to be converted, so 

that the global cost to convert x. is not linear, as in (11). 
1h 

For this reason we assume that in the country P. the resources used to 
1 

produce any amount x. of h, if converted to produce the standard good 
1h 

k, give a yield 

0 (12) 
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where f. (x.h) is a function (not necessarily linear) giving the global 
1hk 1 

cost, in the country Pi' of the amount xih of h, in standard units. We 

admit that at the same time, in the same country P,, the inverse conver-
1 

sion k ~ h is possible, in such a way that by converting the amount y, 
1k 

of k into the good h one has 

fikh(yik) . (13) 

We were able this way to define the functions f.h (x. ) and f. (y, ), 
1 k lh 1kh 1k 

inverse of each other. 

Assuming that they are differentiable, one has 

f' (x )·f' (y ) 
ihk ih ikh ik 1 ' (14) 

which means that the marginal costs of the inverse conversions h+ k and 

k +hare the reciprocal of each other. 

One can remark that fihk(xih) can be regarded, ta a first approximation,as 

the cost (in standard units) to be paid if the conversion h ~ k goes on 

for a further unit of h, after xih units have already been converted, 

and similar statement could be given for fikh(yik). It then represents 

the price of h (in standard units) when the amount x. has been already 
1h 

produced. Unlike in the classical theory, in our hypothesis, this price 

can depend on the amount x. of the good considered. In the classical 
1h 

theory (where the global costs are linear, so that the prices are inde-

pendent of the quantity) (14) becomes 

qihk. qikh '"' 1 . (lS) 
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It is useful to remark that an inequality like 

(16) 

shows that the production of a unit of h (when the production in the 

country Pi is xih and in Ps is xsh) costs less (in standard units) in 

P. than in P • At the assumed level of production, the country P. is 
1 s 1 

better qualified than P to produce h. After (14), (16) becomes 
s 

1 1 
(17) 

i.e. 

(18) 

It is enough to say that (16), assuming the production levels given 

above, evidentiates,at the same time, the better qualification of P 
s 

with respect to P. in producing k. 
1 

Finally remark that, using the last symbols, the equalities hold 

1, ... , n) , 

which were implicity assumed in section 3. 

5. OPTIMAL PARTITION (AMONG THE COUNTRIES OF THE COMMUNITY) OF THE 

PRODUCTION OF A FIXED QUANTITY Xh OF h. 

(19) 

331 

The criterion adopted to estimate the global community cost of any 
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quantity ~ £ H of the good h gives a problem of optimal production, as 

announced in section 2, to be stated now. 

- The use of the resources which produce the total amount Xh of h has 

to be partitioned among the countries of the community, so that the 

(possible) residual resources of each country, if fully used to pr£ 

duce the standard good k, give the maximum yield. 

For the analytical formulation let us remark that the (unknown) amount 

xih of h that the country Pi should produce satisfies the relations 

n 

L xih 
i=l 

xh , o " x. ~ R. , (i 1h 1h 
1, ... , n) 

whose interpretation is immediate. It follows that, in P,, the residual 
1 

resources (which could be used to produce h) can further produce 
def . . . . 

R - x === y un1ts of k. W1th full convers1on to the product1on of 
ih ih ih 

k, the yield f. (R. - x1.h) is obtained. The analytical problem to be 
1hk 1k 

solved is then 

(20) 

(i 1, ... ,n), 

where the maximum and the optimal policy to achieve it clearly depend 
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6. THE LINEAR CASE. 

In the linear case the objective function of the problem (20) is 

and then, according to the evident relations 

n 

= L R.k- min 
i=l ~ 

the following problem is obtained 

n 

min' q x L. ihk ih 
i=l 

n 

L 
i=l 

X =X 
ih h 

(i 1, ... ,n) • 

(21) 

(22) 

Without loss of generality it can be assumed that the symbols are chosen 

so that the inequalities 

(23) 

are satisfied. This means that, according to (16), the countries with a 

lower numeration index are qualified to the production of the h good and 

the ones with higher numeration index are qualified to the production of 

the standard k. 
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n 
( ) . . . 1 

In 22 some known 1nequal1t1es and the constraint L xih 
i=l 

give 

X 

s+l 

L qihk xih 
i=l 

{ 
s+l 

L xih 
i=l 

n 

L qihk xih 
i=l 

lh 
+ X 

2h 

X ~ ... 
h ~ 

t 
i=l 

s 

I xih 
i=l 

X ~ 
h 

(24) 

These are sufficient to claim that, if the quantity X is not greater, 
s h 

as an example, than the bound~ R. (i.e. the maximum which can be 
i=l 1h 

produced with the integral exploitation of the resources of the first 

s countries) then the optimal policy (in this case unique) does not 

assign any production of the h to the countries which follows P 
s 

Precisely, if X E I , then the optimal policy splits the production 
h s+l,h 

in the following way 

s 

xlh R 
lh' x2h 

R . X R 
sh' 

X X -L Rih; 2h' sh s+l,h h 
i=l 

X 
s+2,h 

O· 
' 

. . . X 
nh 

0 . ( 25) 

The corrispondent maximum of the optimization problem, for (21) is 

(26) 
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it can be obtained with the integral exploitation, in the production 

of the standard good k, of the residual resources of the different 

countries. If these are expressed in units of h, they are distributed 

in the following way 

ylh O; y2h O; ••• O; Ys+l,h 

R ; 
s+2,h 

.... , y = R • 
nh nh 

In the conversion h + k, the quantities 

O· y = O· 
' 2k ' Ysk = O; Ys+l,k 

s 

Rs+l,k- qs+l,hk (Xb- ~ Rih); ys+2,k 
i=l 

are obtained, with sum equal to Yk. 

s+l 

L Rih - \; 
i=l 

( 
s+l 

qs+l,hk ,f; 
R . 

s+2,k' 

(27) 

(28) 

The optimal policy indicates how to assigne the resources of the diffe­

rent countries to the production of the quantity Xh of h and of the 

correspondent quantity of the standard item k. It exploits, as one could 

expect, as much as possible the qualification of the different countries, 

given by the (23), in the production of the goods hand k. 

7. THE NON LINEAR CASE. 

Generally an optimal policy can't be explicitly written for the 

problem {20) (as in the linear case). It can be obtained when the con-
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version costs have the following expressions: 

3 

4 

as it can be expected looking at the results obtained in certain pro­

blems, analitically quite similar, by 0. Cucconi 2, C. Wilkinson- S.K. 

Gupta 3 , G. Castellani 4 and, to a certain extent, in the contribution 

to this volume by the latest author, where the analytical problem is 

extended to the case of any convex function, thus including the three 

kinds considered above. When the functions representing the conversion 

costs are (even only semicontinuous but) tabulated at least for some 

discrete values of their argument, the solution can be found by acting 
5 

step by step using dynamic programming 

We will now demonstrate that if, in the various countries, the costs of 

the conversion h - k satisfy in all points of their range the following 

qualifying condition 

0 ~ f I (x ) ~ q ~ f I (x ) ~ q ~ ... ~ fl~hk(xl.h) ..: 
lhk lh lhk 2hk 2h 2hk 

~ q. ~ • . • ~ f 1 (x ) , 
1hk n nh 

( 29) 

then the optimal policy (25), solving the problem in the linear case, 

is also optimal in the non-linear case. 

One should just remark that the qualifying condition (29) can turn out 
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to be rather restrictive, since in fact it requires that the maximum of 

the marginal conversion cost in a country is not larger than the minimum 

of the same cost in the next country. This condition is indeed largely 

fulfilled in the linear case. We must then demonstrate that, in the hyp~ 

thesis (29), the policy described by (25) is optimal also in the non-

linear case (20). Also, that the residual resources, in units of h or k 

respectively in (26) and (27), give now 

(30) 

In the linear case, this coincides with (26). Also, that it is the value 

of the objective function of the problem (20) corresponding to the poli­

cy (25). For our purpose it is sufficient to prove that by modifying the 

policy (25) in any of the following ways: 

X 
s+l,h 

X =/:; 
uh ' ... ' X 

nh 

u = s+2, ••• , n) 

0; (j 

0; .• •; X th a; .•• ; 

1' ... ' s; t s+2, ••• , n; 

(or similar ways), with a and 1:1 chosen in order to satisfy the 

(31) 

constraints of the problem (20), the corresponding value of the objective 

function is less than shown in (30). Or that (referring to the variation 

rules in (31), with similar procedures for other variations of the policy) 

the inequality holds 



338 M. Volpato 

fjhk(a) + '••l,hk ( ~ Rih- \+A)+ 

n 

L 
i=s+2 

+ f (R - a) + f (R - 6) ~ 
thk th uth uh 

+ f ( ~ R1. h - xh) s+l,hk ~ 
1=1 

n 

L 
i=s+2 

R + 
ik 

this, according to (12) and (19), is equivalent to 

R. 
1k 

- R 
tk 

{fjhk(a)- fjhk(O)}- { fthk(Rth)- fthk(Rth- a)}+ 

- R 
uk 

+ {',+l,hk ( ~ •;h- xh + •) - '••l,hk ( ~ Rih- xh) }-

- {f (R ) uhk uh 

hence also to 

- f (R 
uhk uh - A) l ~ 0 ' 

+ 

(32) 

(33) 

{ fJ~hk(!;J.) - f' U: ) } a+ { f' (!; ) - f' (!; )} 6::; o, (34) thk t s+l,hk s+l uhk u 

!;,, !; , !; , !; being conveniently chosen according to Lagrange formula. 
J t s+l u 

But (34) holds since a and 6 are non negative and each expression 

enclosed by braces is non positive according to the qualifying condition 

(29) and since j precedes t and s+l precedes u. 

8. THE LAW OF RECIPROCITY. 

One should remind that two problems of conditioned extremum are 

reciprocal of each other when the function for what the extremum is 
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sought in one of them, appears in the other one, made equal to a 

constant, as a constraint, while all other possible constraints are 
6 

the same in the problems • E.g., the problem 

{ 

def 
max f(X) FM(~) , 

g(X) = ~ 
XED 

339 

where D is an assigned set in the space where X is any element, admits 

the following couple of reciprocal problems: 

{ 
min g(X) 

def 
G (n) === 
m 

Q (n) f(X) = n m 
XED 

{ 
max g(X) 

def 
GM(n) === 

~(n) f(X) = n 

XE:D 

for such problems the following result holds, as recently pointed out by 

F. Giannessi: 

- if X0 is a maximum for the problem PM(~) and if FM(~) is decreasing, 

then X0 is a maximum for the problem ~(FM(~)). Moreover, the equality 

holds 

GM(FM(~)) ; 

characterizing GM(n) as the inverse function of FM(~). 

Applying it to our case, we find that the two problems 
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n 

L fihk(Rih- xih) 
def \(\) max 

i=l 
n 

I: xih X 

i=l 
h 

0 ' xih ' \h 

n 

max L xih 
i=l 

' 
(X E H) 

h ' 

' 
(i 1, ... , n) 

1, ..• , n) 

M. Volpato 

' 

(35) 

(36) 

are reciprocal of each other according to the above analytical defini­

tion. Having in mind the economical meaning of the first problem, the 

one of the second is sought. In it, one can consider as unknown 

1, ... , n) , (37) 

and look at it as an amount of resource (in standard units) that the 

country Pi could convert to the production of an assigned amount Yk (of 

the standard good k), so that the whole production of each country 

satisfies the equality 

n 

L yik \ 
i=l 

(38) 

From this point of view, the amount xih = Rib - (Rib - xih) represents 

the residual resources of the country P. (in units of h) to be fully 
~ 
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exploited in the production of h so that the maximum community yield is 
n 

obtained there, and it is given by the addition L x. . 
. 1 lh 
l"' 

But the residual resources of the country P. are then given, in 
l 

standard units, by Rik - yik' since, in Pi, the amount yik in standard 

units, represents the resources already involved in the production of 

the assigned amount Yk of the standard good k. According to the equiva­

lence expressed in (12), the inequality holds 

fikh(Rik- yik) (39) 

so that the problem (36), with the change of variables described in (37) 

becomes the equivalent problem 

n 
def 

max L fikh(Rik- yik) \(Yk) 
i"'l 

n 

z= yik \ ' (\ E K) ' 
i"'l 

(40) 

0 Rik' (1' "yik" 1, ... , n) • 

The structure of this problem is analitically the same as the one of the 

problem (35). From the point of view of production, it refers to the 

following reciprocal problem: 

- the exploitation of the resources required to produce the total 

amount Yk of the standard good k should be partitioned among the 

partners of the community in such a way that the possible residual 

resources in the various countries, if fully used to produce the 

good h, give the maximum yield. 

Now, for the problem (35), the function Yk Yk(\), giving the maximum, 
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is, as shown in the previous section, the one given in (30) for 

X E I By fully writing the defining relation one has 
h s+l,h 

n 

L R + fihk(Rih- Xh) , per X e I 

i=2 
ik h l,h 

n 

£2hk( ~ xh)' L R + Rih - per xh E I 
i=3 

ik 2,h 

. . (41) 

n ('+1 ·~ yk \(Xh) R, + f R. xh € I ~+Z ~k s+l,hk ~ ~h , per 
s+l ,h 

Rnk + f ( ~ R. - X ) , 
n-l,hk i=l ~h h 

per X E I 
h n-l,h 

f ( t R. - X ) , 
nhk i=l lh h 

per Xh E Inh 

This is sufficient to show the decrease after the qualifying condition 

(29). Then, according to the result by Giannessi, the two problems (35) 

and (36) have the same point of maximum as soon as Yk = Yk(Xh) is in­

serted in (36). Moreover, the function Xh(Yk), giving the maximum in the 

problem (36) and also in (40), is the inverse of Yk(Xh). After (41), the 

definition of Xh(Yk) is then the following 
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n 
R - f (Y - ~ Rik) ' yk € Jlk ' lh lkh k 

i=2 
2 n 
[ Rib - f2kh(Yk- L Rik) ' yk E J2k ' 
i=l i .. 3 

s+l 

- f 1 kh(Yk- ~ R.k), X = X (Y ) = ~ R, yk E 1s+l,k' h h k 
i=l 

l.h s+ ' i=s+2 l. 

. . . 
n-1 

L Rib - fn-l,kh(Yk- Rnk) Yk E Jn-l,k 
i=l 
n 

L Rib- fnkh(Yk) ' \ E.Jnk ' 
i=l 

and the optimal policy to achieve the maximum in the problem (40) 

stemming out of it, is the corresponding of (25) in the change of 

variables defined in (37). So 

O; Y2k = O; .•. ; Ysk O; ys+l,k 
( 

s+l 

fs+l,hk ~Rib 

R . 
s+2,k' y = R • 

nk nk 

This, in the linear case, identifies with (28). 

Then, the law of reciprocity becomes, in our case, the following 

statement: 

- problem (20) and problem (40) are reciprocal; the functions 
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(42) 

(43) 

Yk = Yk(~) and Xh = Xh(Yk), giving the two maxima, are the inverse 

of each other. The optimal policy of one of them is given by the 

residual resources that the optimal policy of the other one has left 

in the various countries. 
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9. THE FRONTIER OF THE MAXIMUM EFFICIENCY. THE CURVE OF THE COMPARED 

COSTS. 

In the classical theory the function Yk = Yk(Xh), or more precis~ 

ly its geometrical representation, is called the frontier of maximum 

efficiency. It is understood to be the maximum efficiency of the commu-

nity in producing the amount Xh of h. The same holds for the (inverse) 

function Xh = Xh(Yk). Considering this meaning, after the criterion 

adopted in § 2 to determine the global community cost of a good, we can 

then conclude that the community cost of any amount Xh of h ( and simi­

larly for Yk of k) is given by the difference 

(44) 

Using the symbols introduced in§ 3, considering (41), it is defined as 

follows 

0 

Rlk- flhk(Rlh- Xh) 

Rlk 

. . . . . . . . . . . . 
s 

L Rik 

zk 
i=l 
s+l 

( o+l ) L R.k - fs+l,hk ~ Rib - ~ 
i=l ~ 

. . . . . . 
n 

'nhk( t. \) L Rik - Rib -
i=l 
n 

L Rik ~ 
i=l 

-
, per Xh = H0 

, per Xh E H1 

, per ~ 

H 
s 

H 
n 

(45) 
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Since Zk is the complement (with respect to Rk) of Yk(Xh), it is evident 

that the geometric representation of the latter yields the representa-

tion of zk. We then consider the geometric representation of Yk=Yk(Xh). 

The classical theory calls it properly the frontier of maximum efficien­

cy. After (41), this representation is a decreasing curve- composed 

polygon, i.e. a continuous decreasing curve, composed by several adja-

cent arcs, related to the ranges H h' (s = 1, .•• , n). Clearly, the arcs 
s, 

become parts of straight lines in the linear case. As an example, in the 

linear case and for a community of four countries, the frontier of maxi-

mum efficiency may look like in the following figure 

H 
0 

I 
I 

1 I I I 

-----4~---------~-----·------~ 
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One can see that,choosing any X~ in (0, Rh), the corresponding Y~ of 

the point E0 gives the maximum efficiency of the community in the 

production of the standard good k under the condition of producing the 

quantity X~ of h. 

It follows that the lenght of the segment E°K 0 (being the complement of 

Y~ to reach Rk) represents the global community cost (in standard units 

of k) of the amount X~ of h. 

Similar remarks hold if in (0, Rk) the amount Y~ of k is established. 

Its global community cost (in h units) is then given by the lenght of 

For the above facts, the frontier of maximum efficiency is also called, 

in the classical theory, the curve of the compared costs. 

10. PRICES IN THE COMMUNITY. 

From the global community costs, as described above, the community 

prices (marginal costs) can be determined. It is well known that they 

are .obtained by differentiating the global costs. 

By restricting the study to the quantity Xh of h, we remark that the 

global cost, as given by (45) can be differentiated only within the 

ranges I 1 h (s = 0, ••• , n-1), thus excluding the extremes. The deriva-
s+ ' 

tive exists when X ~ H (s = 0, •.• , n-1), it does not for Xh = H 
h s+l t ' 

(t = 0, ••• , n-1). Now, let Ahk = Ahk(Xh) be the community price of the 

amount Xh of h. When Xh E H since s+l' 

d\ 
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is the community price, ~hk ranges in 

- def 
A === s+l,h min f' (x ) ' ~ ~ 

x E (O,R ) s+l,hk s+l,h h "" 
s+l,h s+l,h 

~ max f' (x ) • 

X E(O,R ) 
s+l,h s+l,h 

s+l,hk s+l,h 

In the linear case, this degenerates in the point ~hk = qs+l,hk 
-

Instead, when Xh = Ht' (t = 0, .•. , n-1), the global cost cannot be 

differentiated: the optimal community policy does not expect in any 

country the simultaneous production of the two goods. Precisely, if 

Xh = H , the optimal policy of the community is such that the first 
s+l 
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s countries (following the order that qualifies them to produce the good 

h) produce only the good h, while the other ones (more qualified to pro­

duce k) produce only the good k. A point of the curve of maximum effi-

ciency, corresponding to such a critical value of Xh, is called in the 

classical theory Ricardo point. When ~ is in the abscissa of a Ricardo 

point, the derivate of the global cost does not exist. Anyway, we define 

the community price also in such points, by conventionally identifying 

it with any number ~hk belonging respectively to the intervals 
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A 
s+l 

def 
max f 1 (x ) ' Ahk -< shk sh 

X E(O,R) 
sh sh 

~ min 
X €(0,R ) 
s+l,h s+l,h 

f 1 (x ) 
s+l,hk s+l,h 

(s = 0, ..• , n-2) , 

A 
n 

def 
f 1 (x ) ~ A < 
nhk nh hk 

if X 
h 

if X 
h 

M. Volpato 

H 
s+l 

H 
n 

This way the community price of the quantity Xh of h is defined for 

each Xh E(O, Rh). Its determination can be coded with the following 

rule: 

- when Xh does not coincide with the abscissa of any Ricardo point, 

the community price Ahk (of Xh) varies between the minimum and the 

maximum local price of the country to be selected from what follows. 

It should be the last one, in the rank qualifying the countries for 

the production of h, to be called by the optimal community policy to 

help in the production of the fixed quantity xh of h. 

Otherwise, when Xh is identified with the abscissa H0 , H1 , .•. , Hn 

of a Ricardo point, the community price is any number A belonging 
h 

to the intervals A0 , A , ... , A . 
1 n 

As a conclusion we can remark that by increasing the quantity Xh (of h) 

which should be produced by the community, the optimal policy for the 

community requires that the countries where the local price is higher, 

which are then,in order, the ones less qualified to produce the good h, 

contribute to the production of h. Since, according to the previous rule 

the local price (the one of the last producing country) determines the 
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price in the community, it follows that the price in the community 

increases with Xh. But at the same time the local price of the good h 

in the countries more qualified to produce it tends to lower. In fact, 

since those countries have to produce only the good h (and nothing of 

the good k), the gap between their capability to produce hand their 

bad qualification to produce k is enhanced. In those countries then, 

the conversion h + k becomes more difficult and then more expensive. 

This way, the local price of the standard product k is increasing and 

the one of the good h is decreasing. Another remark which is worth 

mentioning concerns the local production policy that each country would 

choose according to their own advantage (without any regard for the 

community), if the only information at hand were the level of the price 

in the community. Even ignoring the optimal policy (in the community 

sense) for sure they would locally adapt such a policy. Indeed, knowing 

that the community price is, for example, ranging in A 1 , the 
s+ ,hk 

countries P. (i ' s) would be compelled to produce only the good h since 
1 

in these countries the community price is higher than the local one. 

Things are just opposite where i > s. 

Concluding, a production policy which is optimal for the community is 

also locally optimal. 

The above conclusion emphasizes that a policy which is locally optimal 

for economic purpose (i.e., it yields the maximum local returns, according 

to the community prices) identifies with the directions of a policy which 

is optimal for the community production (i.e., it yields L~e maximum 

producible amount of either of two· goods when the quantity of the other 

one is fixed) • 

The question then arises whether the community optimal policy for the 

production quantity is community optimal as well for the economic 
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purposes, using the community prices as standard. The answer is defini-

tely affirmative. Indeed, the community optimal policy for quantitative 

purposes, giving the maximum local returns in each country, implies 

global community returns which, being the sum of the local maxima, cannot 

be less than with any other policy. 
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EXPLICIT SOLUTION FOR A CLASS OF ALLOCATION PROBLEMS (o) 
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1. INTRODUCTION. 

In this paper, we deal with the classical allocation problem of 

optimizing the function 

n 

L 
i=l 

f. (x.) 
l l 

under the following constraints 

n 

[ 
i=l 

x. ' c l 

x. ~ 0 
l 

(C > 0) 

(i 1, 2, ... , n) 

( 0 ) Partially supported by the C;N.R. Research Group of Functional 
Analysis and Applications. 

(1) 

(2) 
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that can be solved by applying the dynamic programming algorithm 1 

Under particular assumptions on f. (x ) , the explicit solution can be 
2 1 '· 

obtained for the problem above 

Aim of the paper is to generalize this result and the explicit solution 

is determined when the functions f. (x.) are differentiable and strictly 
1 1 

convex or concave (according to the nature of the problem). Moreover, 

the dynamic programming algorithm will be simplified by giving a cri-

terion, which shows whether we need examine the following steps to find 

the solution. 

There are two different approaches to do this: the former uses the Kuhn-
3 

Tucker theorem (or the Gibbs's lemma) , the latter is related to the 

dynamic programming method. 

For both of these cases, the sequence f~(O) is assumed to be monotonic 
1 

(nonincreasing or nondecreasing according to the nature of the problem), 

so that the positive components p;~ceed all the zero components in the 

optimizing vector. This will make it easier to achieve the goal. 

2. STATEMENT OF THE PROBLEM. 

Let us consider the following problem 

n 
max 2:= f. (x.) 

i=l 
1 1 

(3) 

{~ x. .. c 
1 

X, ~ 0 
1 

wl~c·re f, (x.), for i 
' l 

.... , n, is a twice-differentiable and strictly 
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concave function in [o, c]. 

Under these assumptions, problem (3) has only one solution. 

As the inequality 

C (O) ~ 0 
l. 

(4) 

implies that fi (xi) is a decreasing function in [o, c] and the 

corresponding i-th component in the maximizing vector is zero, we can 

restrict ourselves to the problem: 

m 

max L 
i=l 

f. (x.) 
l. l. 

{f x. ~ c 
i=l l. 

x. ~ 0 
l. 

with 

f! (0) > 0 
l. 

and m <> n. 

(i 1,2, ... ,m) 

(5) 

(6) 

Moreover, being the functions f~(x.) decreasing in [o, c), the equation 
l. l. 

f:(x.) 
1 1 

0 (7) 

has one real root x., at most, in [ 0, C] with x. #: 0 for assumption (6). 
l. l 

If such a root exists for any i 

inequality 

1, 2, ••• , m and satisfies the 
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---------------------------------------------------------------

then the point 

X = ... ' 

solves problem (5). 

X ) 
m 

Otherwise, if the maximizing point is 

.. 
X ... ' 

the following relationship holds 

(8) 

(9) 

• X, < X, , (10) 
1 1 

for any index i, such that (7) has a root and the first constraint is 

fulfilled 

c . (11) 

(11) is guaranteed 4 because, if xi exists, fi (xi) increases in [o, ;i]; 

alternatively, if not, it increases in [o, c]. 

Moreover, inequality (10) can be obtained by applying the Kuhn - Tucker 

theorem. 

Indeed, when the functions f. (x.) are strictly concave, (9) is a solu-
1 1 

tion for problem (5), if and only if there is a A* multiplier which 

makes system (12) consistent, 
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(i 1, 2, ... , m) (12.1) 

• > 0 x. (i 1, 2, ••. , m) (12.2) 
~ 

• f! (x;) • A* x. x. (i 1, 2, ... , m) (12.3) 
~ ~ ~ ~ 

A* ~ 0 (12.4) 

m 

L X~~ c (12.5) 

i=l ~ 

A•( t, • - c ) 0 x. (12.6) 
~ 

We shall now prove that, under our assumptions, it is A• > 0. 

Indeed, if we assume A• = 0, for (12.1) the equality x~ = 0 implies 
~ 

(6) • any index f! (0) ~ 0, that contradicts and we must take x. > 0 for 
~ ~ 

Then, from (12.3) it follows f!(x~) 0 for i = 1, 2, .. •' n, and this 
~ ~ 

cannot hold, if not all the equations (7) have a root in [0, c]. 

i. 

On the other hand, if such a root exists for any index i, but inequality 

(8) does not hold, then it results x* = x (i = 1, 2, .•• , m) and (8) 
i i 

follows from (12.5), contradicting our assumptions. 

Thus the proof is complete; moreover, we can see that from (12.6) and 

• A > 0, we find that (11) holds. 

Now we can prove inequality (10) for the values of i such that (7) has 

a root~. E [o, c]. 
~ • Indeed, if the corresponding x. is positive, (10) follows from (12.3) 

~ • and from the fact that f!(x.) is decreasing and f!(x.) = 0, A > 0; on 
~ ~ ~ ~ 

the other hand, if x; = 0, inequality (10) is guaranteed by (6). 
~ 

Finally, when (8) does not hold, problem (5) has the same solution as 
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m 
Max ~ f. (x.) 

i=l 
~ ~ 

m 

I x. c 
i=l 

~ 

x. ~ 0 
~ 

which we shall be concerned with, in the following chapters. 

3. A PROPERTY OF THE MAXIMIZING VECTOR FOR PROBLEM (13). 

Let us consider problem (13) and its maximizing vector (9) 

easy to prove that for a pair of indexes i and j with i < j (i, j 

= 1, 2, ••• , m), when we set 

* • • x. + x. z 
~ J 

(x~, x~) is the only solution for the problem 
~ J 

max [f.(x.) + f.(x.)J 
~ ~ J J 

{ 

X + X = z* 
i j 

x.' x. ~ 0 
~ J 

(13) 

it is 

(14) 

Indeed, let us assume a different solution (x., x.) for problem (14): 
l. J 

then we can construct a new vector 
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that satisfies the constraint ~ x. = C, because of the equality 
i=l l m 

X~ + X~ = X 
l J i + x.' 

J 
and makes the objective function L f. (x.) 

i""l l l 

greater that the value obtained at point (9). 

That being stated, we rewrite problem (14) in the following way: 

max { f.(z•- x.) + f.(x.)} 
0 ~ x. ~ z* 1 J J J 

J 

Let us set 

g(x.) 
J 

f. (z*- x.) +f. (x.) 
l J J J 

so that we have 

g' (x.) 
J 

-f~(z*- x.) + f~(x.) 
l J J J 

We are now going to prove the following 

Lemma 1. 

Let us assume 

C (O) ~ f ~ (0) 
l J 

in correspondence to one real number a, at mostJ with 0 ~ a < 

the following inequalities hold 

g'(x.)>O 
J 

g' (x.) 
J 

0 

for 

for 

0 ' x. < a , if a > 0 
J 

x, = a 
J 

"' z 

357 

(15) 

(16) 

(17) 



358 

g' (x.) < 0 
J 

Proof. 

• for either a < x. ~ z or 
J 

if a does not exist. 

0 ~ • x. ' z 
J 

G. Castellani 

(18) 

As f. (x.) and f.(x.) are strictly concave, f~(x.) is decreasing with 
1 1 J J J J 

respect to x. and f!(z*- x.) is increasing with respect to x. in [o, c]. 
J 1 J J 

Then we can find one value, at most, x. = a, such that 

C(z•-x.) 
1 J 

or, equivalently, 

g' (x.) 
J 

0 . 

C (x.) 
J J 

Moreover, we see that it cannot be a 

follows from the inequalities 

f! (0) ~ f~ (0) > C (z*) , 
1 J J 

J 

z*, as the relation 

(19) 

(20) 

the former of which holds for our assumptions and the latter is true, 

because f~(x.) decreases in [o, z*]. 
J J 

We have proved that (17) holds. 

Finally, as g'(x.) is a continuous function, and the only root a of (19) 
J 

is simple, we get (18) and (16). 

Lemma 2. 

Let us assume the follohling inequalities hold 
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Then the maximizing vector x* 

satisfies the inequalities 

with o < o. < 1. 
1 

Proof. 

... ' x*) for problem (13) 
m 

x• ~ ... ?> lf"(o x*)l x* 
2 m m m m 
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( 21) 

(22) 

If the root a, defined in Lemma 1, does not exist, the solution to (15) 

is 

X~ 0 , 
J 

as we have g' (x.) < 0 over the whole closed interval [ 0, z*] 
J 

In this case, the solution to the equivalent problem (14) is 

• X, 
1 

* z * X, 
J 

0 ' 

whi~h satisfies the inequality 

lf~(o. x~)l x~ ~ lf~(o. x~) I x~ 
1 1 1 1 J J J J 

If the root a does not exist, the solution of (15) is 

* X, = ll 
J 

so that the equivalent problem (14) is solved by 
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* 
... • x. z - (l 

' x. = (l 
1 J 

and we get 

f ~ (x~) f ~ (x~) 
1 1 J J 

(23) 

As we can write 

C (x~) c {0) + X~ f'.' (o. x~) 0 < 0. < 1 
1 1 1 1 1 1 1 1 

and 

f! (x~) f ~ (0) + X~ f'.' (a. x~) 0 < 0. < 1 
' J J J J J J J J 

from (23) and from 

f ~ (0) ~ f ~ (O) , 
1 J 

it results 

x~ f~(o. x~) ' x~ f~(o. x~) , 
1 1 1 1 J J J J 

or, equivalently, from the strict concavity of f.(x.) and f.(x.), we have 
1 1 J J 

lf~(o. x~)l x~ ~ lf~(o. x~)l x! . 
1 1 1 1 J J J J 

(24) 

The proof of Lemma 2 is now complete, because (24) holds for any pair of 

indexes i, j, with i < j. 
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Thus, we can state the following property for the maximizing vector of 

(13): 

Let f!(O) be ordered according to (21)~ then if the j-th component of 
1 

the vector~ which maximizes (13) is positive~ all the preceeding comp£ 

nent$ are positive; if it is zero~ all the following ones are zero. 

4. SOLUTION OF PROBLEM (13) BY MEANS OF THE KUHN - TUCKER THEOREM. 

For our particular problem (13) with strictly concave functions 

f. (x.), the Kuhn- Tucker theorem, we mentioned above, states that the 
1 1 

• • • • vector x = (x1, x2, •.. , xm) solves problem (13), if and only if it 

exists a A• multiplier such that 

f! (x~) • (i 1, 2, •• •' m) (25 .1) ~ A 
1 1 

ill 
~ 0 (25.2) x. 

1 

ill f:(x~) "' A• (25.3) x. x. 
1 1 1 1 

m 

L • c (25.4) x. 
i=l 

1 

We remark that, under our particular assumptions, the same result has 

been stated by J. Willard Gibbs and from it we can derive the following 

property. 

Let us assume the functions f.(x.) satisfy inequality (21) and let r be 
1 1 

the greatest index i, i = 1, 2, ••• , m~ such that the root A of the 
r 

equation 
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r 

L c (26) 

i=l 

satisfies the PeZationship 

f I (0) > A 
r r 

(27) 

Then the maximizing veatoP foP pPobZem (13) is given by 

r: 
c-1<A ) (i 1' 2, ••• ' r) 

1 r 

0 (i r+l, r+2, . •.' m) X 
i 

(28) 

and the maximum value is 

r 

L 
i=l 

-1 
f.(f~ (A))+ 

1 1 r 

m 

L 
i=r+l 

f. (0) 
1 

First of all, we remark that, as f. (x.) is a strictly concave function, 
1 1 

its derivative f~(x.) decreases and can be inverted, so that the sum 
r -1 1 1 r 

2::= f ~ (A) is decreasing on the set n [ f! (C), f ~ (O)J and equation 
'1 1 '1 1 1 

tz6) has one real root, at most. 1 = 

In the particular case r = 1, equation (26) has a real root satisfying 

(27): indeed, from 

and, consequently 
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it results 

as fi(x1) is a decreasing function. 

We are.now going to prove that (28) maximizes problem (13). 

As (21) and (27) imply 

f ~ (0) > " (i 
1 r 

1, 2, ... , r) , (29) 

assuming ,..• = >.. , we cannot find x~ 0 for (25.1). Thus, as we deduce 
r 1 

x• > 0 from (25.2), we have 
i 

(i 1, 2, ... , r) , 

that follows from (25.3). 

Moreover, the inequality x• 1 > 0 contradicts the assumption that r is 
r+ 

the greatest index satisfying (30). 

Indeed, if this is true, from (25.3) - (25.4) it follows 

(i = 1, 2, ••• , r+l) 

and, consequently, 

f 1 (x• ) >.. 
r+l r+l r+l 

but the inequality 

f I 1(0) > )., 1 r+ r+ 
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contradicts our assumptions. 

Now, taking into account that in the maximizing vector the positive 

components preceed the zero components, we can conclude that (28) solves 

(13). 

5. SOME APPLICATIONS. 

In this section, we shall solve some particular problems, by 

applying the rule described above. Further examples can be found in Gian 
. 5, 6 

ness1 

a) Let us consider 

m 
max .L (a. + b. 

i=l 
1 1 

m 

L x. ~ c 
i"'l 

1 

x. > 0 
1 

with C > 0 and c. < 0. 
1 

x. 
1 

the problem 
7 

2 
+ c. x.) 

1 ]. 

If some b. are nonpositive, the corresponding components x* of the 
1 i 

maximizing vector are zero: therefore we can assume 

b. > 0 
1 

(i = 1, 2, ••• , m) 

and the relationships 

(30) 
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imply inequalities (21). 

For coefficients linked by the inequality 

m 

~ 
i=l 

b. 
1 

2c. 
1 

( c ' 

the solution of (30) is given by 

X, 
1 

b. 
1 ---2c, 

1 

(i 1, 2, ... , m) , 

and the maximum value for the objective function becomes 

m 

L 
i=l 

( 
b, ) l 

a---
i 4ci 

Alternatively, let us assume the inequality 

t 
i=l 

holds. 

b. 
1 

2c. 
1 

> c 

365 

If r is the greatest index i, i 1, 2, ••• , m, such that the equation 

has 

r A - b. 

L 
i=l 

a root A 

b > A 
r r 

1 

2c. 
.. c 

1 

' 
satisfying 

r 
the inequality 

then, the maximizing vector for problem (30) is given by 

(31) 

(32) 
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A - b. 

r= 
r 1 

2c. 
1 

x. 0 
1 

(i 1, 2, .•. , r) 

(i r+ 1, r+2, ... , m) • 

From (31) we get 
r b. 

c +L 1 

2c. 
A 

i=l 1 

r r 

L 1 
2c. 

and from (32) 

r 

c > L. 
i=l 

i=l 1 

(34) it follows 

b - b 
r i 

2c. 
1 
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(33) 

(34) 

(35) 

Thus, if r is the greatest index i, i = 1, 2, ••• , m such that (35) 

holds, then (33) gives the maximizing vector and .A is in (34). 
8 r 

b) Let us solve the problem 

m -k.x. 

L p. (1 - e max 
i=l 

1 

m 
[ x. ~ c 
i=l 

1 

x. ~ 0 
1 

with C > 0 and p, > o. 
1 

1 1) (36) 

As the components x~ of the maximizing vector, corresponding to k. ~ 0, 
1 1 

are zero, we can assume 

k. > 0 
1 

i 1, 2, ••• , m 
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and 

in order to get (21). 

Let r be the greatest index i, i = 1, 2, ••• , m, such that the equation 

r log p, k, - log A 

L l. l. c 
i=l k. 

l. 

has a root A r' satisfying the inequality 

p k ) A 
r r r 

Then, the vector 

• X = 
log p, k. - log 

l. l. 

i 

• X, 0 
l. 

k, 
l. 

solves our problem. 

A 
r 

(i 1, 2, 3, ... , r) 

(i r+l, r+2, ••• ,m) 

Indeed, it is easy to show that, from (37) - (38) - (40) 

log 

we obtain 

A 
r 

r 

.L 
i=l 

log p, k. 
l. l. 

k, 
l. 

r 1 

L 
i=l ki 

- c 

(37) 

(38) 

(39) 

(40) 
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r 

c > L 

p.k. 
l. l. 

log--­
p k 
r r 

i=l k. 
l. 
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(41) 

Thus, if r is the greatest index i, i = 1, 2, ••• , m such that (41) 

holds, then (39) gives the maximizing vector for~ satisfying (40). 
9 r 

o) Finally, trying to solve the problem 

m p.x. 
Max L l. l. 

(42) 
x.+k, 

i•l l. l. 

{t, x. < c 
l. 

x. >0 
l. 

with C > 0, p. > 0, k.> o, we can assume the sequence 
l. 1 

pl p2 Pm 
~ 

k2 
~ ... >--

kl k 
m 

in order to satisfy (21). 

Under these hypotheses, if r is the greatest index i, i • 1, 2, ••• , m, 

such that, for a root of the equation 

r f·•· )I L .2.2:-- - k = c 
i=l ~ i 

(43) 

the following inequality holds 

Pr 
>). 

k r (44) 
r 

then, the point 
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lli 
X = 

i 

solves problem (42). 

- k 
i 

(i • 1, 2, ••• , r) 

(i = r+l, r+2, ••• , m) 

From· (43) we get the relationship 

A 
r 

I (k.p.) 
1 1 

r 

c + L k. 
i=l 1 

2 

and, by means of (44) and (46), we obtain the inequality 

r 
l L (k.p,) r 1 1 

c > 
i=l L. k. 

( :: )l 
-

i=l 1 

369 

(45) 

(46) 

(47) 

Thus, if r is the greatest index i, i = 1, 2, ••• , m such that (47) holds, 

then the maximizing vector is given by (45) with A assigned by (46). 
r 

6. SOLUTION OF THE CLASSICAL ALLOCATION PROBLEM WITH ADDITIONAL 

CONSTRAINTS ON VARIABLES, 0 'x. 'a .. 
1 1 

In this section, we deal with prollem 
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max f_ 
i=l 

f. (x.) 
1. 1. 

~ c 

.,: a. 
1. 

G. Oistellani 

(48) 

(i = 1, 2, ... , m) 

under the usual assumption that f.(x.) are differentiable, strictly 
1. 1. 

concave functions and, with no loss of generality, satisfy inequalities 

f! (0) > 0 and (21) • 
1. 

First of all, let us assume all the functions f. (x.) increase in ( 0, c]. 
1. 1. m 

If the upper bounds a. satisfy inequality ~ a. < C, the solution of 
1. i=l 1. 

(48) 

• x "' a. i 1 
(i 1, 2, • , • , m) 

is trivial. 
m 

Alternatively, when we meet inequality ~ 
blem (48) satisfies the constraint~ i=~ 

i=l 1. 
are led to the equivale.nt problem 

m 
max L f. (x.) 

i=l 
1. 1. 

r Lx. c 
i=l 1 

0 ~xi ' a. (i "' 1, 2, ... , m) 
1 

a. > C, the solution of pro-
1 

C in equational form and we 

(49) 

For (49), the Kuhn- Tucker conditions are given by 
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f!(x.) ~A+ ll. 
1 1 1 

X, ~ 0 , 
1 

x. f: (x.) 
1 1 1 

m 

x. (A + ll.) 
1 1 

Lx. c • 
i=l 

1 

X, ~ Cl, 
1 1 

ll. ~ 0 
1 

ll.(x.- a.) 
1 1 1 

0 
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(i 1, 2, .•• , m) , 

(i 1, 2, ..• , m) , 

(50) 

(i = 1, 2, ••. , n) , 

(i 1, 2, ..• , m) , 

(i = 1, 2, .•• , m) 

if there is no upper bound condition on variables in (49), system (50) 

becomes 

f! (x.) ' A 
1 1 

x. ~ 0 
1 

x. f: (x.) 
1 1 l 

m 

Lx. 
1 

i=l 
c 

X, A 
1 

(i 1, 2, .•. , m) , 

(i 1, 2, .•• , m) , 

(i 1, 2, ••• , m) , 

and we evaluate its solution point 

... , x•, A*) 
m 

(51) 
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by means of technique described in section 4 • 

• For x. 'a., i = 1, 2, .•• , m, them-dimensional vector 
1 1 

solves problem (49) and the (2m+l)-dimensional vector 

... ' • 
X ' m ... ' 

with~~= 0 fori= 1, 2, ••• , m, solves system (50). 
1 

G. Castellani 

• (xl' ••• , x*) 
m 

• For xj > aj' j E I 1 C I= {1, 2, ••• , m}, we have to consider problem 

Max L fh(xh) (52) 
hE I-I1 

L xh - c - L a. 
hE I-I . e: I J 

1 J 1 

xh > 0 (hE I-I1) 

for which the Kuhn - Tucker conditions are given by 

(53) 

[ x=C-L 
hEI-I1 h hEI1 

a. 
J 

Let (x:•, ~··I hE I- I 1) solve system (53), according to section 4. 

If we find x:• ~~for any hE I- I 1, them-dimensional vector 
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( ••I'EI h""'I I) aj' ~ J 1' """ - 1 ' (54) 

solves problem (49). Indeedi let us assume 

{" = £'( ) - , •• for any j E Il '(J. • a. 
J J J 

'(J .... 0 for any hE I - I h 1 

As f!(x,) is a decreasing function and x• >a., the following inequalities 
J J j J 

hold 

the last of which follows from 

x.f!(x.) 
1 1 1 

X, A 
1 

for i 1, 2, ••• , m • 

For the particular assumption made on f.(x.), we can notice that A11 and 
1 1 

A•• are positive because of (51) and (53). 

We are now going to prove the relationship A• ~ A1111 • 

From inequality C - L a, > C - L x~ , we get 
·er J ·cor J 
J 1 J 1 

for any h E I - r1 , 

one of which, at least, is strict inequality. 

(55) 

If there esists at least one index hE I - I 1 such to have x: > 0, then, 

fh(~) being a decreasing function, from the third relation in (51) and 

(53) respectively, we obtain A• ~ A••. 
On the other hand, if we have ~ = 0 for any h E I - I1, at least the 
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first component x** x** is positive, under the assumption that f (x ) 
h ' hl' h h 

are ordered according to (21). 

• 1 • 1 • h • f I (0) 0:: ' .. and f I (X •• ) F1na ly, by us1ng re at1ons 1ps ~ A 

hl hl hl 
b · d · f t' have ,• > ,••. e1ng a ecreas1ng unc 1on, we A A 

•• vle can now conclude that inequality \.1. > 0 is true and th•~ m-dimensional 
J 

•• I vector (a., x j E 11 , h ~I- I 1) solves system (49). 
J h ' 

Let us now assume x~• > ah at least for an index h t I - r1 in this case 

we iterate the procedure described above and reach the solution point 

for (49) in m-1 steps, at most. 

In order to conclude the description of our algorithm, we have to assume 

that not all the functions f. (x,) are increasing in [0, CJ: in this case 
1 1 

we solve the equivalent problem 

m 
max L f. (x.) (56) 

i=l 
1 1 

m 

L X, ~ c 
i=l 

1 

0 ~ x. ~ yi 1 
(i 1, 2, , •• ' m) 

where y. = min (a., 8.) and B. is either the root of equation C (x.) = 0 
1 1 1 1 1 1 

on the open- closed interval (O, cJ, if it exists, or B. = +oo, if such 
1 

a root does not exist. 

On interval [o, yi]' any function fi(xi) is increasing and we can use 

the solution technique described above. 

7. A MULTISTAGE PROCEDURE. 

We can solve problem (13) by applying a dynamic programming algo-
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rithm, i.e. by a multistage procedure that, at each step, solves the 

problem 

def 
F. (z) Max [Fi-l (z -xi) + fi (xi)] (i 2, 3, .•• , m) 
~ 

0 ~ x. ~ z 
~ 

with 

F 1 (z) and 0 ~ z ~ C . 

Lemmas proved in section 3, allow us to reduce the amount of computations. 

Indeed, at each stage, we can decide whether to examine the following 

steps. 

First of all, let us set 

def 
G.(x.) F. 1(z- x.) + f.(x.) 
~ ~ ~- ~ ~ ~ 

0 ~ x. ~ z • 
~ 

(57) 

If x. maximizes G.(x.) over [o, z] and x. (j 1, 2, ..• , i-1) solves 
~ ~ ~ J 

the problem 

F. 1cz-x.) 
~- ~ 

i-1 
maxL f.(x.) 

j=l J J 

i-1 
L x. 
j=1 J 

X, ~ 0 
J 

z - x. 
~ 

(j 1, 2, .... i-1) 

then (i1, x2, ••• , xi-1' xi) satisfies (22) fori= m, by keeping (21). 

We are now going to prove two interesting theorems. 

Theorem 1. 

Let the fUnations f.(x.) satisfy (21). 
~ ~ 
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Then for onZy one number B~ at most~ ~ith 0 E a < z~ ~e get 

G! (x.) 
1 1 

G! (x.) 
1 1 

G! (x.) 
1 1 

Proof. 

> 0 

0 

< 0 

for 0 E X, < B if B > 0 
1 

for x. • a 
1 

for either a < x. ' z or 0 ~ x. ~ z, 
1 1 

if a does not exist. 

G. Castellani 

First of all, as F. 1 Cz - x.) is a strictly concave function with 
6 1- 1 

respect to x. 
1 

, G.(x.) satisfies the same property and has only one 
1 1 

maximizing point over [ 0, z]. 

Moreover, the inequality G!(z) ~ 0 contradicts (22): under this condition 
1 

G.(x.) reaches its maximum value for x. • z and x. 
1 1 1 J 

o. j .. 1, 2, ... ,i-l, 

and this cannot hold for Lemma 2. 

Thus we are forced to assume 

G! (z) < 0 • 
1 

(58) 

If we assume G!(z) ~ 0, then G.(x.), which is strictly concave, increases 
1 1 1 

in the whole interval [ O, z) and reaches its maximum value at X. = z : 
1 

that contradicts (21). Thus it cannot increase over the whole interval 

[0, zJ and either it decreases in [0, z] or it increases in a closed­

open interval [0, a), reaches its maximum value at a and decreases in the 

open-closed interval (a, z]. 

It is easy to see that it is a; z, according to (58). 

Theorem 2. 

Under aondition (21), Zet x. 
1 

0 maximise G.(x.) in [o, z} and i. 1 1 1 1+ 
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~mise G. 1(x. 1) in [o, z]~ too. Then x. 1 0. 
L+ L+ L+ 

Proof. 
(i+l) 

Indeed, let x. maximize G. (x.) in [o, z - x. 1] : from theorem 1 
L L L+ L 

the condition X. = 
L 

0 implies that G. (x.) decreases in [o, z] and in 
L L 

[ 0, z - x. 1 ] , too. 
L+ (i+l) 

Thus we get x. • 
L 

0 and, for lemma 2, x. 1 L+ 
o. 
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8. SOLUTION OF PROBLEM (13) BY MEANS OF A DYNAMIC PROGRAMMING ALGORITHM. 

Let us solve problem (13), still under assumption (21). 

At the first step, we define 

0 ' z ' c 

at the second step, we solve the problem 

def 
F2 (z) =•= 

i.e. we maximize the function 

over the interval [o, z] • 

From the equality 

we get 
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(0) 
if and only if 

G. Castellani 

(59) 

(60) 

and, for theorem 1, G2(x2) reaches its maximum value over [o, z] either 

at the point 

x2 0 if z < Fi_-\f;(o)) 

or at the point 

X = 
2 a2 if z > F'-l(f'(O)) 

1 2 

a 2 being the only root of the equation 

F' (z - x ) 
1 2 

(61) 

2 

Thus the function L tx. = 
i=l 

z and x. ~ 0 
l. 

f.(x.) gets its maximum value under the constraints 
l. l. 

i=l l. 

either at the point 

( 0 ) As F.(z) (i = 1, 2, ••• , m) is a strictly concave function, then 
l. 

F~(z) decreases and can be inverted. 
l. 
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or at the poinL 

It is worthwile to remark that, if it holds 

(62) 

the point which maximizes G2(x2) over [o, c] is x; = 0 and theorem 2 

allows us not to examine the following stages, as the optimal policy 

is given by 

{
·: = c 

X = 0 
j 

(j 2, 3, ... , m) 

and the corresponding maximum value of the objective function is 

F (C) 
m 

m 

fl (C) + L f. (O) 
j=2 J 

On the other hand, when (62) does not hold, we need solve the next 

problem 

F3(z) 

For our purpose, let us set 
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G (x ) = F (z - x ) + f 3(x3) 
3 3 2 3 

from the relationship 

G'(x) = -F'(z- x) + f'(x) 
3 3 2 3 3 3 , 

we get 

if and only if 

-1 
z ~ F' (f' (O)) 

2 3 
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(63) 

(64) 

For theorem 1 and relationships (63)-(64), G3 (x3) is maximum over [o, z] 

either at the point 

0 if z ~ 

or at the point 

x if z > F'-l(f'(O)) 
3 a3 2 3 

a 3 being the only root of the equation 

(65) 

Thus, if z ~ F;-l(f~(O)), the point, which maximizes~ fi(xi) under 
i=l 



Allocation Problems 

the constraints 

x3 0 

x2 = a2 

x = 
1 

z - x2 

tx. 
1 

i=l 
z, x. ~ 0, is given by 

1 

where a2 solves equation (61); alternatively, if z > F;-l<f;(o)), the 

solution is 

x3 a3 

x2 a2 

xl z - x2 - x 
3 

where a3 solves (65) and a2 is a root of the equation 

F' (z - x - x ) 
1 3 2 

In this case too, if it is 

we neecl not examine all the followit1g steps of .:he a:!.gorithrr;, becahe 

x; = 0 maximizes G3 (x3) over [o, cJ and the optimal policy i1 

• 0 (j 3, 4, ',,' m) x. 
J 

x• 
2 a2 

x* 
1 

c - x• 
2 
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where a2 is the only root of (65) with z C and the maximum value of 

the objective function is equal to 

F (C) 
m 

(0) 
At the i-th stage, under the assumption 

we solve the problem 

def 
F. (z) ==• 

1 

Let us set 

G,(x.) =F. 1(z- x,) + f,(x.) 
1 1 1- 1 1 1 

then, by using the equality 

c:(x.) 
1 1 

-F' (z- x.) + f:(x.) 
i-1 1 1 1 

it follows 

G: (0) ~ 0 , 
1 

(66) 

(67) 

( 0 ) If (57) does not hold, the maximizing point of (13) is given by the 

one of the (i-2)-th stage, taken at z = C and completed by x. 0 
J 

for j = i-1, i, .•• , m. 
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if and only if 

-1 
z ~ F! l (f!(O)) • 

1- 1 
(68) 

Theorem 1 and relationships (67)-(68) allow us to infer that the maxi­

mizing point of G.(x.) over [o, z] is either 
1 1 

x. if 
-1 

(f! (0)) 0 z ~ F! l 1 1- 1 

or 

x. if z F'-1 (f! (0)) a. > • 1 1 1-1 1 

where a. is the only root of the equation 
1 

F!(z- x.) 
1 1 

f! (x.) 
1 1 

Thus, the solution point for the problem of maximizing the function 

~ f.(x.) under the constraints ,:t: x. = z and x. ~ O, is given by 
j=l J J j=l J J 

x. 0 
1. 

x. a. 
J J 

(j- i-1, i-2, ... , 2) ' 

x = z 
1 

i-1 -L sc. 
j=2 J 

if z' Fi=~ (fi{O)), aj being the root of the equation 

i-2 

F! (z- LX. - x.) .. f!(x.) 
J-1 h . h J J J 

•J 
(j • i-1, i-2, ... ' 2) (69) 
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i-2 
with ~ ~ = 0 for j = i-1. On the contrary, when we find z>Fj_=~(fj_ (0)), 

the h=J maximizing point is given by 

x. 
J 

a. 
J 

(j i, i-1, ... , 2) 

i 
z- Lx. 

j=2 J 

a. being the root of the equation 
J 

i-1 
F! 1 (z -L x - x.) f! (x.) 
J- h=j 

h J J J 
(j i, i-1, ••• , 2) 

i-1 
where~ xh = 0 for j = 1. 

h=" 
In this J general step too, we can see that the inequality 

-1 
C ~ F! l (f!(O)) 

1- 1 

allows us not to consider the following steps, because G.(x.) is maximum 
1 1 

at x• = 0 over [o, c] and, consequently, problem (13) is solved by 
i 

x• = 0 
j 

(j i, i + 1, ... , m) 

• x. a. 
J J 

(j i-1, i-2, ••• , 2)' 

i-1 
L:x~ 
j=2 J 

a. being the root of (69) with z 
J 

C, and the maximum value for the 

objective function is 
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F {C) = F. l (C) 
m J.-

m 
+[ 

j=i 
f. (0) • 

J 

Following the method described above, we can get the solution of (13) 

in m steps ~t most. 

Thus, if r is the greatest index i 1, 2, ••• , m, such that the 

following inequality holds 

C > F'-l (f'(O)) , 
r-1 r 

the only solution point for (13) is given by 

a. 
]. 

X~ 0 
]. 

• x. 
]. 

• X, 
]. 

a. 
]. 

c -

being the 

r 

i=2 
L X~ 

]. 

only root 

r 
F' (C - L • X, 
i-1 

j=r+l J 

r 
with L • = 0 for i X, 

j=i+l J 

(i r+l, r+2, •.. , m) 

(i=2,3, ... ,r) 

of the equation 

- x.) = f~(x.) (i = r, r-1, ... , 2) , 
]. ]. ]. 

r. 

385 



386 G. Castellani 

REFERENCES 

1. Bellman, R., Dynamic Prog~amming, Princeton University Press, 1967. 

2. Volpato, M., Studi e modelli di ~ce~ca ope~ativa, U.T.E.T., Torino, 

1971, chap. 2. 

3. Lisei, G., Su un p~ticola~e p~oblema di ~ice~ca ope~ativa ~isolto 

con il lemma di J. Will~d Gibbs, Department of Mathematics, Universi 

ty of Genoa, 1972. 

4. Volpato, M., Studi e modelli di ~ice~ca ope~ativa, U.T.E.T., Torino, 

1971, chap. 7, pg. 1052. 

5. Giannessi, F., Alcune considerazioni sulla risoluzione di classici 

problemi di riassicurazione, in Volpato 2, chap. 3. 

6. Giannessi, F., Sulla risoluzione col metodo della programmazione dina 

mica di un problema di estremo concernente la scadenza media, in Vol-
2 

pato , chap. 3. 

7. Cucconi, 0., Sopra un particolare problema (non lineare) di distribu-
2 

zione, in Volpato , chap. 3. 

8. Wilkinson, C. and Gupta, S.K., Allocation Promotional Effort to 

Competing Activities: A Dynamic Approach, in Proceedings of the Vth 

Inte~ational Confe~ence on Ope~ational Rese~ch, Venice ]969, 

J. Lawrence ed., Tavistock Publications, London, 1970. 

9. Castellani, G., Su un particolare problema di teoria della ricerca, 

Rendiconti del Comitato pe~ il potenziamento in Venezia degli studi 

economiai, CEDAM, Padova, 1971. 



Erratum of W. Stadler 

Natural Structural Shapes, p. 95. 

The statement beginning with 11 Thus, ... 11 preceding the inequality 

(3.49) is incorrect. As a matter of fact one can prove the following 

about the two designs (see [28] for the details): 

(1) For ·a given mass 

6 ~ o*, g2(u*(·)) ~ g2(u(·)), T;in ~ T < T~ax 

(2) For a given maximum deformation 

91 (u(·)) ~ g1(u*(·)), g2(u*(·)) ~ g2(u(·)), 

(3) For a given maximum stress 

g1(u(·)) ~ g1(u*(·)), g2(u*(·)) ~ g2(u(·)), * -0 ~ 0 • 

(4) The natural structure is the minimum weight structure for 

a given stored energy. 

(5) When k1 and k2 are considered as small parameters in the so­

lution for the natural shape, then the constant stress struc­

ture is a first-order approximation to the natural structure 

in terms of these parameters. 

(6) In the limit as g1 tends to infinity, 6 and g2(u(·)) tend to 
It * zero. However, o tends to~ k1k2 and g2(u (·))tends to~ k2w, 

a more reasonable result, since it clearly makes no sense to 

have a loaded bar whose deformation may be made arbitrarily 

small by loading it with more mass. 
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